On nonlinear Schrodinger equations on the hyperbolic space

被引:1
|
作者
Cencelj, Matija [1 ,2 ,3 ]
Farago, Istvan [4 ,5 ,7 ]
Horvath, Robert [6 ,7 ]
Repovs, Dusan D. [1 ,2 ,3 ]
机构
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词
Schrodinger equation; Poincare ball model; Palais principle; Laplace-Beltrami operator; Hadamard manifold; Kirchhoff-type problem; CRITICAL-POINT THEOREM; ELLIPTIC PROBLEMS; EXISTENCE; COMPACTNESS; MULTIPLICITY; BOUNDARY; SOBOLEV; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条