On nonlinear Schrodinger equations on the hyperbolic space

被引:1
|
作者
Cencelj, Matija [1 ,2 ,3 ]
Farago, Istvan [4 ,5 ,7 ]
Horvath, Robert [6 ,7 ]
Repovs, Dusan D. [1 ,2 ,3 ]
机构
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词
Schrodinger equation; Poincare ball model; Palais principle; Laplace-Beltrami operator; Hadamard manifold; Kirchhoff-type problem; CRITICAL-POINT THEOREM; ELLIPTIC PROBLEMS; EXISTENCE; COMPACTNESS; MULTIPLICITY; BOUNDARY; SOBOLEV; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Stochastic nonlinear Schrodinger equations
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 : 168 - 194
  • [32] ON NONLINEAR SCHRODINGER-EQUATIONS
    KATO, T
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1987, 46 (01): : 113 - 129
  • [33] Nonlinear Schrodinger equation on real hyperbolic spaces
    Anker, Jean-Philippe
    Pierfelice, Vittoria
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1853 - 1869
  • [34] Resonance asymptotics for Schrodinger operators on hyperbolic space
    Borthwick, David
    Crompton, Catherine
    JOURNAL OF SPECTRAL THEORY, 2014, 4 (03) : 515 - 567
  • [35] Spectral gaps of Schrodinger operators on hyperbolic space
    Karp, L
    Peyerimhoff, N
    MATHEMATISCHE NACHRICHTEN, 2000, 217 : 105 - 124
  • [36] On homogenization of nonlinear hyperbolic equations
    Efendiev, Y
    Popov, B
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) : 295 - 309
  • [37] STABILITY OF NONLINEAR HYPERBOLIC EQUATIONS
    SATTINGER, DH
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1968, 28 (03) : 226 - +
  • [38] Pitchfork Bifurcation at Line Solitons for Nonlinear Schrodinger Equations on the Product Space RxT
    Akahori, Takafumi
    Bahri, Yakine
    Ibrahim, Slim
    Kikuchi, Hiroaki
    ANNALES HENRI POINCARE, 2024, 25 (07): : 3467 - 3497
  • [39] SCATTERING-THEORY IN THE ENERGY SPACE FOR A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS
    GINIBRE, J
    VELO, G
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1985, 64 (04): : 363 - 401
  • [40] Polynomial deceleration for a system of cubic nonlinear Schrodinger equations in one space dimension
    Kita, Naoyasu
    Masaki, Satoshi
    Segata, Jun-ichi
    Uriya, Kota
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230