共 50 条
On nonlinear Schrodinger equations on the hyperbolic space
被引:1
|作者:
Cencelj, Matija
[1
,2
,3
]
Farago, Istvan
[4
,5
,7
]
Horvath, Robert
[6
,7
]
Repovs, Dusan D.
[1
,2
,3
]
机构:
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词:
Schrodinger equation;
Poincare ball model;
Palais principle;
Laplace-Beltrami operator;
Hadamard manifold;
Kirchhoff-type problem;
CRITICAL-POINT THEOREM;
ELLIPTIC PROBLEMS;
EXISTENCE;
COMPACTNESS;
MULTIPLICITY;
BOUNDARY;
SOBOLEV;
SYSTEMS;
D O I:
10.1016/j.jmaa.2020.124516
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文