The condensate from torus knots

被引:6
|
作者
Gorsky, A. [2 ,3 ]
Milekhin, A. [1 ,2 ,3 ,4 ]
Sopenko, N. [1 ,2 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117218, Russia
[2] Moscow Inst Phys & Techol, Dolgoprudnyi 141700, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
关键词
Supersymmetric gauge theory; Wilson; 't Hooft and Polyakov loops; Solitons Monopoles and Instantons; Field Theories in Higher Dimensions; SUSY FIELD-THEORIES; TRANSITIONS; INVARIANTS; HOMOLOGY; DUALITY; SPACES;
D O I
10.1007/JHEP09(2015)102
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss recently formulated instanton-torus knot duality in Omega-deformed 5D SQED on R-4 x S-1 focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the SU(2) SQCD with N-f = 4 and identify the numbers (n, m) of the torus T-n,T- m knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton-W-boson web with instanton and electric numbers (n, m) but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] Crosscap numbers of torus knots
    Teragaito, M
    TOPOLOGY AND ITS APPLICATIONS, 2004, 138 (1-3) : 219 - 238
  • [42] A principle for ideal torus knots
    Olsen, Kasper W.
    Bohr, Jakob
    EPL, 2013, 103 (03)
  • [43] Unknotting sequences for torus knots
    Baader, Sebastian
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 111 - 116
  • [44] On Kontsevich integral of torus knots
    Marché, J
    TOPOLOGY AND ITS APPLICATIONS, 2004, 143 (1-3) : 15 - 26
  • [45] DAHA and iterated torus knots
    Cherednik, Ivan
    Danilenko, Ivan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (02): : 843 - 898
  • [46] A polynomial parametrization of torus knots
    Koseleff, P. -V.
    Pecker, D.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (5-6) : 361 - 377
  • [47] ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS
    Gavrilik, A. M.
    Pavlyuk, A. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (01): : 129 - 134
  • [48] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989
  • [49] The palette numbers of torus knots
    Hayashi, Taiki
    Nakamura, Takuji
    Nakanishi, Yasutaka
    Satoh, Shin
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (10)
  • [50] Torus Knots and Mirror Symmetry
    Brini, Andrea
    Eynard, Bertrand
    Marino, Marcos
    ANNALES HENRI POINCARE, 2012, 13 (08): : 1873 - 1910