A polynomial parametrization of torus knots

被引:3
|
作者
Koseleff, P. -V. [1 ]
Pecker, D. [1 ]
机构
[1] UPMC, F-75252 Paris 05, France
关键词
Polynomial curves; Stieltjes series; Pade approximant; Torus knots;
D O I
10.1007/s00200-009-0103-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For every odd integer N we give explicit construction of a polynomial curve C(t) = (x(t), y(t)), where deg x = 3, deg y = N + 1 + 2[N/4] that has exactly N crossing points C(t(i)) = C(s(i)) whose parameters satisfy s(1) < ... < s(N) < t(1) < ... < t(N). Our proof makes use of the theory of Stieltjes series and Pade approximants. This allows us an explicit polynomial parametrization of the torus knot K(2,2n+1) with degree (3, 3n + 1, 3n + 2).
引用
收藏
页码:361 / 377
页数:17
相关论文
共 50 条