High accuracy nonconforming finite elements for fourth order problems

被引:8
|
作者
Wang Ming [3 ,4 ]
Zu PengHe [3 ,4 ]
Zhang Shuo [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Peking Univ, LMAM, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
fourth order problem; nonconforming finite element; high accuracy; arbitrary dimensions;
D O I
10.1007/s11425-012-4429-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity, but the accuracy is usually low. In this paper, we present a family of high-accuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions. The finite element methods are given in a unified way with respect to the dimension. This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
引用
收藏
页码:2183 / 2192
页数:10
相关论文
共 50 条
  • [41] Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements
    Xie, Manting
    Xie, Hehu
    Liu, Xuefeng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (01) : 335 - 354
  • [42] Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements
    Manting Xie
    Hehu Xie
    Xuefeng Liu
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 335 - 354
  • [43] On the error bounds of nonconforming finite elements
    ShiPeng Mao
    ZhongCi Shi
    Science China Mathematics, 2010, 53 : 2917 - 2926
  • [44] Extension of NXFEM to nonconforming finite elements
    Capatina, D.
    El-Otmany, H.
    Graebling, D.
    Luce, R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 226 - 245
  • [45] Conforming and nonconforming harmonic finite elements
    Sorokina, Tatyana
    Zhang, Shangyou
    APPLICABLE ANALYSIS, 2020, 99 (04) : 569 - 584
  • [46] Nonconforming quadrilateral finite elements:¶a correction
    Z. Cai
    J. Douglas Jr.
    J. E. Santos
    D. Sheen
    X. Ye
    CALCOLO, 2000, 37 : 253 - 254
  • [47] On the error bounds of nonconforming finite elements
    MAO ShiPeng & SHI ZhongCi The State Key Laboratory of Scientific and Engineering Computing
    ScienceChina(Mathematics), 2010, 53 (11) : 2917 - 2926
  • [48] Nonconforming Rectangular Morley Finite Elements
    Andreev, A. B.
    Racheva, M. R.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 158 - 165
  • [49] A CLASS OF NEW NONCONFORMING FINITE ELEMENTS
    高俊斌
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 1993, (02) : 186 - 194
  • [50] Nonconforming vector valued finite elements
    Hiptmair, R.
    East-West Journal of Numerical Mathematics, 1997, 5 (03): : 163 - 182