High accuracy nonconforming finite elements for fourth order problems
被引:8
|
作者:
Wang Ming
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, LMAM, Beijing 100871, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Wang Ming
[3
,4
]
Zu PengHe
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, LMAM, Beijing 100871, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Zu PengHe
[3
,4
]
Zhang Shuo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Zhang Shuo
[1
,2
]
机构:
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Peking Univ, LMAM, Beijing 100871, Peoples R China
fourth order problem;
nonconforming finite element;
high accuracy;
arbitrary dimensions;
D O I:
10.1007/s11425-012-4429-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity, but the accuracy is usually low. In this paper, we present a family of high-accuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions. The finite element methods are given in a unified way with respect to the dimension. This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
机构:
Peking Univ, LMAM, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, LMAM, Beijing 100871, Peoples R China
Hu, Jun
Shi, Zhong-Ci
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R ChinaPeking Univ, LMAM, Beijing 100871, Peoples R China
机构:
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090
Kuzin V.I.
Kravtchenko V.V.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State University, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090