High accuracy nonconforming finite elements for fourth order problems

被引:8
|
作者
Wang Ming [3 ,4 ]
Zu PengHe [3 ,4 ]
Zhang Shuo [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Peking Univ, LMAM, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
fourth order problem; nonconforming finite element; high accuracy; arbitrary dimensions;
D O I
10.1007/s11425-012-4429-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity, but the accuracy is usually low. In this paper, we present a family of high-accuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions. The finite element methods are given in a unified way with respect to the dimension. This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
引用
收藏
页码:2183 / 2192
页数:10
相关论文
共 50 条
  • [21] Nonconforming finite element method for a fourth-order elliptic variational inequality
    Deng, Q.
    Shen, S.
    Numerical Functional Analysis and Optimization, 1994, 15 (1-2)
  • [22] High-order finite elements for the solution of Helmholtz problems
    Christodoulou, K.
    Laghrouche, O.
    Mohamed, M. S.
    Trevelyan, J.
    COMPUTERS & STRUCTURES, 2017, 191 : 129 - 139
  • [23] Nonconforming finite elements of higher order satisfying a new compatibility condition
    Matthies, G.
    Schieweck, F.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (01) : 23 - 50
  • [24] LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENTS FOR PLANE ELASTICITY
    Hu, Jun
    Shi, Zhong-Ci
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 88 - 102
  • [25] Stable low order nonconforming quadrilateral finite elements for the stokes problem
    Kim, Y
    Kim, S
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 363 - 376
  • [26] Nonconforming, anisotropic, rectangular finite elements of arbitrary order for the Stokes problem
    Apel, Thomas
    Matthies, Gunar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1867 - 1891
  • [27] Analysis of a projection method for low-order nonconforming finite elements
    Dardalhon, F.
    Latche, J. -C.
    Minjeaud, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 295 - 317
  • [28] Nonconforming Finite Elements for the -curl△curl and Brinkman Problems on Cubical Meshes
    Zhang, Qian
    Zhang, Min
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (05) : 1332 - 1360
  • [29] THE MULTISCALE FINITE ELEMENT METHOD WITH NONCONFORMING ELEMENTS FOR ELLIPTIC HOMOGENIZATION PROBLEMS
    Chen, Zhangxin
    Cui, Ming
    Savchuk, Tatyana Y.
    Yu, Xijun
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 517 - 538
  • [30] Application of nonconforming finite elements to solving advection-diffusion problems
    Kuzin V.I.
    Kravtchenko V.V.
    Numerical Analysis and Applications, 2010, 3 (01) : 39 - 51