We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation -. u = ( O | u (y)| 2 | x - y | d y) | u | 2 2 u + u in O; where Omega is a bounded domain of R (N) with Lipschitz boundary, lambda is a real parameter, N 3, is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
机构:
Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, ItalySapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
Pistoia, Angela
Vaira, Giusi
论文数: 0引用数: 0
h-index: 0
机构:
Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, ItalySapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
Vaira, Giusi
ANALYSIS IN THEORY AND APPLICATIONS,
2022,
38
(01):
: 1
-
25
机构:
Beijing Normal Univ, Minist Educ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Minist Educ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Huang, Guangyue
Chen, Wenyi
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China