Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6

被引:3
|
作者
Pistoia, Angela [1 ]
Vaira, Giusi [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
来源
ANALYSIS IN THEORY AND APPLICATIONS | 2022年 / 38卷 / 01期
关键词
Sign-changing solutions; blow-up phenomenon; Ljapunov-Schmidt reduction; Transversality theorem; BLOWING-UP SOLUTIONS; ELLIPTIC-EQUATIONS; MULTISPIKE SOLUTIONS;
D O I
10.4208/ata.OA-2020-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the classical Brezis-Nirenberg problem -Delta u = u vertical bar u vertical bar + lambda u in Omega, u = 0 on partial derivative Omega, when Omega is a bounded domain in R-6 has a sign-changing solution which blows-up at a point in Omega as lambda approaches a suitable value lambda(0) > 0.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] LEAST ENERGY NODAL SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN DIMENSION N=5
    Roselli, Paolo
    Willem, Michel
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 59 - 69
  • [2] Multispike solutions for the Brezis-Nirenberg problem in dimension three
    Musso, Monica
    Salazar, Dora
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6663 - 6709
  • [3] Nodal cluster solutions for the Brezis-Nirenberg problem in dimensions N ≥ 7
    Musso, Monica
    Rocci, Serena
    Vaira, Giusi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
  • [4] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [5] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [6] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [7] Positive solutions for a Kirchhoff problem of Brezis-Nirenberg type in dimension four
    Anello, Giovanni
    Vilasi, Luca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 251
  • [8] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [9] The Brezis-Nirenberg problem near criticality in dimension 3
    del Pino, M
    Dolbeault, J
    Musso, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12): : 1405 - 1456
  • [10] SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Flores, Isabel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 673 - 682