covatest: An R Package for Selecting a Class of Space-Time Covariance Functions

被引:15
|
作者
Cappello, Claudia [1 ]
De Iaco, Sandra [1 ]
Posa, Donato [1 ]
机构
[1] Univ Salento, Dept Management Econ Math & Stat, I-73100 Lecce, Italy
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 94卷 / 01期
关键词
space-time covariance functions; symmetry; separability; type of non-separability; test on classes of space-time covariance functions; STRICT POSITIVE DEFINITENESS; RANDOM-FIELDS; FORTRAN PROGRAMS; MODELS; NONSEPARABILITY; PREDICTION; PRODUCT; GSTAT;
D O I
10.18637/jss.v094.i01
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Although a very rich list of classes of space-time covariance functions exists, specific tools for selecting the appropriate class for a given data set are needed. Thus, the main topic of this paper is to present the new R package, covatest, which can be used for testing some characteristics of a covariance function, such as symmetry, separability and type of non-separability, as well as for testing the adequacy of some classes of space-time covariance models. These last aspects can be relevant for choosing a suitable class of covariance models. The proposed results have been applied to an environmental case study.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [41] Geostatistical stationary space-time covariance functions modeling of Yellow Sigatoka progress in banana crop
    Rodrigues, J. D. P.
    Alves, M. C.
    Freitas, A. S.
    Pozza, E. A.
    Oliveira, M. S.
    Alves, H. J. P.
    AUSTRALASIAN PLANT PATHOLOGY, 2019, 48 (03) : 233 - 244
  • [42] Nonparametric Estimation of Spatial and Space-Time Covariance Function
    Choi, InKyung
    Li, Bo
    Wang, Xiao
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (04) : 611 - 630
  • [43] Antenna selection for space-time communication with covariance feedback
    Barriac, G
    Madhow, U
    GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 1234 - 1238
  • [44] Structured covariance estimation for space-time adaptive processing
    Barton, TA
    Smith, ST
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3493 - 3496
  • [45] Covariance and Quantum Principles–Censors of the Space-Time Structure
    H.-J. Treder
    H.-H. von Borzeszkowski
    Foundations of Physics, 2006, 36 : 757 - 763
  • [46] Half-spectral space-time covariance models
    Horrell, Michael T.
    Stein, Michael L.
    SPATIAL STATISTICS, 2017, 19 : 90 - 100
  • [47] GENERAL SPACE-TIME COVARIANCE IN A PURE SPINOR THEORY
    DURR, HP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1983, 73 (02): : 165 - 195
  • [48] Nonparametric Estimation of Spatial and Space-Time Covariance Function
    InKyung Choi
    Bo Li
    Xiao Wang
    Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 611 - 630
  • [49] Support Estimation of a Sample Space-Time Covariance Matrix
    Delaosa, Connor
    Pestana, Jennifer
    Goddard, Nicholas J.
    Somasundaram, Samuel D.
    Weiss, Stephan
    2019 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE (SSPD), 2019,
  • [50] On a class of Einstein space-time manifolds
    Mihai, A
    Rosca, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (3-4): : 471 - 480