covatest: An R Package for Selecting a Class of Space-Time Covariance Functions

被引:15
|
作者
Cappello, Claudia [1 ]
De Iaco, Sandra [1 ]
Posa, Donato [1 ]
机构
[1] Univ Salento, Dept Management Econ Math & Stat, I-73100 Lecce, Italy
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 94卷 / 01期
关键词
space-time covariance functions; symmetry; separability; type of non-separability; test on classes of space-time covariance functions; STRICT POSITIVE DEFINITENESS; RANDOM-FIELDS; FORTRAN PROGRAMS; MODELS; NONSEPARABILITY; PREDICTION; PRODUCT; GSTAT;
D O I
10.18637/jss.v094.i01
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Although a very rich list of classes of space-time covariance functions exists, specific tools for selecting the appropriate class for a given data set are needed. Thus, the main topic of this paper is to present the new R package, covatest, which can be used for testing some characteristics of a covariance function, such as symmetry, separability and type of non-separability, as well as for testing the adequacy of some classes of space-time covariance models. These last aspects can be relevant for choosing a suitable class of covariance models. The proposed results have been applied to an environmental case study.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [31] Weighted composite likelihood-based tests for space-time separability of covariance functions
    Bevilacqua, M.
    Mateu, J.
    Porcu, E.
    Zhang, H.
    Zini, A.
    STATISTICS AND COMPUTING, 2010, 20 (03) : 283 - 293
  • [32] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Allard, Denis
    Emery, Xavier
    Lacaux, Celine
    Lantuejoul, Christian
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1479 - 1495
  • [33] Space-time covariance functions based on linear response theory and the turning bands method
    Hristopulos, Dionissios T.
    Tsantili, Ivi C.
    SPATIAL STATISTICS, 2017, 22 : 321 - 337
  • [34] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    Statistics and Computing, 2020, 30 : 1479 - 1495
  • [35] Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach
    Bevilacqua, Moreno
    Gaetan, Carlo
    Mateu, Jorge
    Porcu, Emilio
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 268 - 280
  • [36] SPACE-TIME OF CLASS ONE
    VILLASENOR, RF
    BONILLA, JLL
    ZUNIGA, GO
    MATOS, T
    GENERAL RELATIVITY AND GRAVITATION, 1989, 21 (08) : 777 - 784
  • [37] On the Evaluation of Space-Time Functions
    Beal, Jacob
    Usbeck, Kyle
    Benyo, Brett
    COMPUTER JOURNAL, 2013, 56 (12): : 1500 - 1517
  • [38] ClustR: A Space-Time Cluster Analysis R Package for Individual-level Data
    Enders, Catherine
    Hyde, Rebecca J.
    Selvin, Steve
    Metayer, Catherine
    Francis, Stephen Starko
    EPIDEMIOLOGY, 2020, 31 (02) : 224 - 228
  • [39] Geostatistical stationary space-time covariance functions modeling of Yellow Sigatoka progress in banana crop
    J. D. P. Rodrigues
    M. C. Alves
    A. S. Freitas
    E. A. Pozza
    M. S. Oliveira
    H. J. P. Alves
    Australasian Plant Pathology, 2019, 48 : 233 - 244
  • [40] On the frequency domain composite likelihood methods for estimating space-time covariance functions for large datasets
    Mosammam, Ali M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (04) : 1146 - 1160