GENERA OF BRILL-NOETHER CURVES AND STAIRCASE PATHS IN YOUNG TABLEAUX

被引:16
|
作者
Chan, Melody [1 ]
Martin, Alberto Lopez [2 ]
Pflueger, Nathan [1 ,3 ]
Teixidor i Bigas, Montserrat [4 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] IMPA, Estr Dona Castorina 110, BR-22460902 Rio De Janeiro, RJ, Brazil
[3] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[4] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; SPECIAL DIVISORS; DEGENERACY LOCI; THEOREM;
D O I
10.1090/tran/7044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the genus of the variety of linear series of rank r and degree d on a general curve of genus g, with ramification at least a and beta at two given points, when that variety is 1-dimensional. Our proof uses degenerations and limit linear series along with an analysis of random staircase paths in Young tableaux, and produces an explicit scheme-theoretic description of the limit linear series of fixed rank and degree on a generic chain of elliptic curves when that scheme is itself a curve.
引用
收藏
页码:3405 / 3439
页数:35
相关论文
共 50 条