GENERA OF BRILL-NOETHER CURVES AND STAIRCASE PATHS IN YOUNG TABLEAUX

被引:16
|
作者
Chan, Melody [1 ]
Martin, Alberto Lopez [2 ]
Pflueger, Nathan [1 ,3 ]
Teixidor i Bigas, Montserrat [4 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] IMPA, Estr Dona Castorina 110, BR-22460902 Rio De Janeiro, RJ, Brazil
[3] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[4] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; SPECIAL DIVISORS; DEGENERACY LOCI; THEOREM;
D O I
10.1090/tran/7044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the genus of the variety of linear series of rank r and degree d on a general curve of genus g, with ramification at least a and beta at two given points, when that variety is 1-dimensional. Our proof uses degenerations and limit linear series along with an analysis of random staircase paths in Young tableaux, and produces an explicit scheme-theoretic description of the limit linear series of fixed rank and degree on a generic chain of elliptic curves when that scheme is itself a curve.
引用
收藏
页码:3405 / 3439
页数:35
相关论文
共 50 条
  • [31] Higher-rank Brill-Noether loci on nodal reducible curves
    Brivio, Sonia
    Favale, Filippo F.
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [32] REDUCIBLE HILBERT SCHEME OF SMOOTH CURVES WITH POSITIVE BRILL-NOETHER NUMBER
    KEEM, CH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) : 349 - 354
  • [33] Brill-Noether loci on moduli spaces of symplectic bundles over curves
    Bajravani, Ali
    Hitching, George H.
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 443 - 469
  • [34] Brill-Noether theory of curves on Enriques surfaces II: the Clifford index
    Knutsen, Andreas Leopold
    Lopez, Angelo Felice
    MANUSCRIPTA MATHEMATICA, 2015, 147 (1-2) : 193 - 237
  • [35] Brill-Noether problem for Steiner bundles. Applications to space curves
    Ellia, PP
    Hirschowitz, A
    Manivel, L
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (06): : 835 - 857
  • [36] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [37] BRILL-NOETHER ALGORITHM AND GOPPA CODES
    LEBRIGAND, D
    RISLER, JJ
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02): : 231 - 253
  • [38] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [39] Brill-Noether theory on Hirzebruch surfaces
    Costa, L.
    Miro-Roig, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) : 1612 - 1622
  • [40] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161