Some q-exponential Formulas for Finite-Dimensional □q-Modules

被引:0
|
作者
Yang, Yang [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
q-exponential function; Quantum algebra; Equitable presentation; Primary; Secondary; ALGEBRA; MODULES;
D O I
10.1007/s10468-019-09862-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the algebra square(q) which is a mild generalization of the quantum algebra U-q(sl(2)). The algebra square(q) is defined by generators and relations. The generators are {x(i)}(i is an element of Z4), where Z(4) is the cyclic group of order 4. For i is an element of Z(4) the generators x(i), x(i+1) satisfy a q-Weyl relation, and x(i), x(i+2) satisfy a cubic q-Serre relation. For i is an element of Z(4) we show that the action of xi is invertible on every nonzero finite-dimensional square(q)-module. We view x(i)(-1) as an operator that acts on nonzero finite-dimensional square(q)-modules. For i is an element of Z(4), define n(i,i+1) = q(1 - x(i)x(i+1))/(q - q(-1)). We show that the action of n(i,i+1) is nilpotent on every nonzero finite-dimensional square(q)-module. We view the q-exponential exp(q) (n(i,i+1)) as an operator that acts on nonzero finite-dimensional square(q)-modules. In our main results, for i, j is an element of Z(4) we express each of exp(q) (n(i,i+1))x(j) exp(q) (n(i,i+1))(-1) and exp(q) (n(i,i+1))(-1)x(j)exp(q) (n(i,i+1)) as a polynomial in {x(K)(+/- 1)}(k is an element of Z4).
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [41] Analytic properties of a special q-exponential function
    Ruffing, A
    Simon, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2003, (150): : 401 - 410
  • [42] q-exponential fitting for distributions of family names
    Yamada, Hiroaki S.
    Iguchi, Kazumoto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) : 1628 - 1636
  • [43] Modelling train delays with q-exponential functions
    Briggs, Keith
    Beck, Christian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (02) : 498 - 504
  • [44] A multiple q-exponential differential operational identity
    Zhiguo Liu
    Acta Mathematica Scientia, 2023, 43 : 2449 - 2470
  • [45] The uncertainty measure for q-exponential distribution function
    Ou CongJie
    El Kaabouchi, Aziz
    Wang, QiuPing Alexandre
    Chen JinCan
    CHINESE SCIENCE BULLETIN, 2013, 58 (13): : 1524 - 1528
  • [46] A multiple q-exponential differential operational identity
    Liu, Zhiguo
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2449 - 2470
  • [47] Random networks with q-exponential degree distribution
    Sampaio Filho, Cesar I. N.
    Bastos, Marcio M.
    Herrmann, Hans J.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [48] Two generalized q-exponential operators and their applications
    Nadia Na Li
    Wei Tan
    Advances in Difference Equations, 2016
  • [49] Bistable stochastic processes in the q-exponential family
    Hasegawa, Yoshihiko
    Arita, Masanori
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4450 - 4461
  • [50] Evidence of q-exponential statistics in Greek seismicity
    Antonopoulos, Chris G.
    Michas, George
    Vallianatos, Filippos
    Bountis, Tassos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 : 71 - 77