Some q-exponential Formulas for Finite-Dimensional □q-Modules

被引:0
|
作者
Yang, Yang [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
q-exponential function; Quantum algebra; Equitable presentation; Primary; Secondary; ALGEBRA; MODULES;
D O I
10.1007/s10468-019-09862-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the algebra square(q) which is a mild generalization of the quantum algebra U-q(sl(2)). The algebra square(q) is defined by generators and relations. The generators are {x(i)}(i is an element of Z4), where Z(4) is the cyclic group of order 4. For i is an element of Z(4) the generators x(i), x(i+1) satisfy a q-Weyl relation, and x(i), x(i+2) satisfy a cubic q-Serre relation. For i is an element of Z(4) we show that the action of xi is invertible on every nonzero finite-dimensional square(q)-module. We view x(i)(-1) as an operator that acts on nonzero finite-dimensional square(q)-modules. For i is an element of Z(4), define n(i,i+1) = q(1 - x(i)x(i+1))/(q - q(-1)). We show that the action of n(i,i+1) is nilpotent on every nonzero finite-dimensional square(q)-module. We view the q-exponential exp(q) (n(i,i+1)) as an operator that acts on nonzero finite-dimensional square(q)-modules. In our main results, for i, j is an element of Z(4) we express each of exp(q) (n(i,i+1))x(j) exp(q) (n(i,i+1))(-1) and exp(q) (n(i,i+1))(-1)x(j)exp(q) (n(i,i+1)) as a polynomial in {x(K)(+/- 1)}(k is an element of Z4).
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [31] Depolarization's Dynamic: Exponential and q-Exponential Decay
    Lopes de Almeida, Francisco Jackson
    Rosa Silva, Joao Batista
    Ramos, Rubens Viana
    2021 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC), 2021,
  • [32] Finite dimensional simple modules of (q, Q)-current algebras
    Kodera, Ryosuke
    Wada, Kentaro
    JOURNAL OF ALGEBRA, 2021, 570 : 470 - 530
  • [33] The Q-ideals in polynomial rings and the Q-modules over polynomial rings
    Daniyarova, E. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2007, 4 : 64 - 84
  • [34] A STUDY ON q-SPECIAL NUMBERS AND POLYNOMIALS WITH q-EXPONENTIAL DISTRIBUTION
    Kang, Jung Yoog
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 541 - 553
  • [36] FINITE-DIMENSIONAL MODULES
    LEAVITT, WG
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 362 - 362
  • [37] The uncertainty measure for q-exponential distribution function
    OU CongJie
    EL KAABOUCHI Aziz
    WANG QiuPing Alexandre
    CHEN JinCan
    Science Bulletin, 2013, (13) : 1524 - 1528
  • [38] Geometry of q-Exponential Family of Probability Distributions
    Amari, Shun-ichi
    Ohara, Atsumi
    ENTROPY, 2011, 13 (06): : 1170 - 1185
  • [39] A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY
    刘治国
    ActaMathematicaScientia, 2023, 43 (06) : 2449 - 2470
  • [40] The uncertainty measure for q-exponential distribution function
    OU CongJie
    EL KAABOUCHI Aziz
    WANG QiuPing Alexandre
    CHEN JinCan
    Chinese Science Bulletin, 2013, 58 (13) : 1524 - 1528