On Ito's formula of Follmer and Protter

被引:0
|
作者
Eisenbaum, N
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Paris 07, F-75252 Paris, France
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Follmer and Protter have established an Ito formula for the d-dimensional Brownian motion and a function F in the Sobolev space W(1,2). In this formula, the usual second order terms are replaced by quadratic covariations. We show here that these covariations are actually area integrals with respect to local times. We also extend their formula to the time-dependent case.
引用
收藏
页码:390 / 395
页数:6
相关论文
共 50 条
  • [41] A Generalization of Ito's Formula and the Stability of Stochastic Volterra Integral Equations
    Li, Wenxue
    Liu, Meng
    Wang, Ke
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [43] Time-dependent tempered generalized functions and Ito's formula
    Catuogno, Pedro
    Olivera, Christian
    APPLICABLE ANALYSIS, 2014, 93 (03) : 539 - 550
  • [44] Local time-space calculus and extensions of Ito's formula
    Ghomrasni, R
    Peskir, G
    HIGH DIMENSIONAL PROBABILITY III, 2003, 55 : 177 - 192
  • [45] A C1-Ito's Formula for Flows of Semimartingale Distributions
    Bouchard, Bruno
    Tan, Xiaolu
    Wang, Jixin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [46] Extension and Application of Ito's Formula Under G-Framework
    Zhang, Bo
    Xu, Jing
    Kannan, D.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (02) : 322 - 349
  • [47] A generalization of the Buckdalm-Follmer formula for composite transformations defined by finite dimensional substitution
    Yano, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 42 (04): : 671 - 702
  • [48] AN OPTIMAL ITO FORMULA FOR LEVY PROCESSES
    Eisenbaum, Nathalie
    Walsh, Alexander
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 202 - 209
  • [49] FERMION ITO FORMULA AND STOCHASTIC EVOLUTIONS
    APPLEBAUM, DB
    HUDSON, RL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (04) : 473 - 496
  • [50] Ito formula for free stochastic integrals
    Anshelevich, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (01) : 292 - 315