On Ito's formula of Follmer and Protter

被引:0
|
作者
Eisenbaum, N
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Paris 07, F-75252 Paris, France
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Follmer and Protter have established an Ito formula for the d-dimensional Brownian motion and a function F in the Sobolev space W(1,2). In this formula, the usual second order terms are replaced by quadratic covariations. We show here that these covariations are actually area integrals with respect to local times. We also extend their formula to the time-dependent case.
引用
收藏
页码:390 / 395
页数:6
相关论文
共 50 条
  • [21] ITO'S FORMULA FOR GAUSSIAN PROCESSES WITH STOCHASTIC DISCONTINUITIES
    Bender, Christian
    ANNALS OF PROBABILITY, 2020, 48 (01): : 458 - 492
  • [22] From Tanaka's formula to Ito's formula: Distributions, tensor products and local times
    Rajeev, B
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 371 - 389
  • [23] Ito's integrated formula for strict local martingales
    Madan, Dilip B.
    Yor, Marc
    IN MEMORIAM PAUL-ANDRE MEYER: SEMINAIRE DE PROBABILITIES XXXIX, 2006, 1874 : 157 - 170
  • [24] Generalization of Ito's formula for smooth nondegenerate martingales
    Moret, S
    Nualart, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 91 (01) : 115 - 149
  • [25] An anticipatory Ito formula
    Kuo, HH
    Nishi, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (02) : 36 - 38
  • [26] A REMARK ON THE ITO FORMULA
    Ibragimov, I. A.
    V. Smorodina, N.
    Faddeev, M. M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2024, 69 (02) : 227 - 242
  • [27] ITO-HENSTOCK INTEGRAL AND ITO'S FORMULA FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Teng, Timothy Robin Y.
    de Lara-Tuprio, Elvira P.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 135 - 160
  • [28] Ito's Integrated Formula for Strict Local Martingales with Jumps
    Chybiryakov, Oleksandr
    SEMINAIRE DE PROBABILITES XL, 2007, 1899 : 375 - 388
  • [29] A useful extension of Ito's Formula with applications to optimal stopping
    Alsmeyer, G
    Jaeger, M
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 779 - 786
  • [30] Distributional Ito's Formula and Regularization of Generalized Wiener Functionals
    Amaba, Takafumi
    Ryu, Yoshihiro
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 703 - 753