CONTINUOUS-TIME RANDOM WALK MODEL OF RELAXATION OF TWO-STATE SYSTEMS

被引:2
|
作者
Denisov, S. I. [1 ]
Bystrik, Yu. S. [1 ]
机构
[1] Sumy State Univ, UA-40007 Sumy, Ukraine
来源
ACTA PHYSICA POLONICA B | 2015年 / 46卷 / 05期
关键词
ANOMALOUS DIFFUSION; MAGNETIZATION; MAGNETS; CLUSTER;
D O I
10.5506/APhysPolB.46.931
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the continuous-time random walk (CTRW) approach, we study the phenomenon of relaxation of two-state systems whose elements evolve according to a dichotomous process. Two characteristics of relaxation, the probability density function of the waiting times difference and the relaxation law, are of our particular interest. For systems characterized by the Erlang distributions of waiting times, we consider different regimes of relaxation and show that, under certain conditions, the relaxation process can be non-monotonic. By studying the asymptotic behavior of the relaxation process, we demonstrate that heavy and superheavy tails of waiting time distributions correspond to slow and superslow relaxation, respectively.
引用
收藏
页码:931 / 947
页数:17
相关论文
共 50 条
  • [41] Anomalous Relaxation Processes in Two-state Systems
    Bystrik, Yu S.
    Denisova, L. A.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2015, 7 (03)
  • [42] A CONTINUOUS-TIME RANDOM-WALK APPROACH TO MAGNETIC DISACCOMMODATION
    CASTRO, J
    RIVAS, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1994, 130 (1-3) : 342 - 346
  • [43] ENERGY-TRANSFER AS A CONTINUOUS-TIME RANDOM-WALK
    BLUMEN, A
    ZUMOFEN, G
    JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (10): : 5127 - 5140
  • [44] CONTINUOUS-TIME RANDOM-WALK APPROACH TO DYNAMIC PERCOLATION
    HILFER, R
    ORBACH, R
    CHEMICAL PHYSICS, 1988, 128 (01) : 275 - 287
  • [45] Continuous-time random walk approach to on-off diffusion
    Miyazaki, S
    Harada, T
    Budiyono, A
    PROGRESS OF THEORETICAL PHYSICS, 2001, 106 (06): : 1051 - 1078
  • [46] THE CONTINUOUS-TIME RANDOM WALK VERSUS THE GENERALIZED MASTER EQUATION
    Grigolini, Paolo
    FRACTALS, DIFFUSION, AND RELAXATION IN DISORDERED COMPLEX SYSTEMS, PART A, 2006, 133 : 357 - 474
  • [47] Continuous-time random walk as a guide to fractional Schrodinger equation
    Lenzi, E. K.
    Ribeiro, H. V.
    Mukai, H.
    Mendes, R. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [48] CONTINUOUS-TIME RANDOM-WALK ASPECTS IN REACTION AND TRANSPORT
    KLAFTER, J
    BLUMEN, A
    AIP CONFERENCE PROCEEDINGS, 1984, (109) : 173 - 188
  • [49] CONTINUOUS-TIME RANDOM-WALK ALONG INEQUIVALENT STATES
    CHATURVEDI, M
    SRIVASTAVA, V
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (22): : L671 - L676
  • [50] Continuous-time random walk and parametric subordination in fractional diffusion
    Gorenflo, Rudolf
    Mainardi, Francesco
    Vivoli, Alessandro
    CHAOS SOLITONS & FRACTALS, 2007, 34 (01) : 87 - 103