A CONTINUOUS-TIME RANDOM-WALK APPROACH TO MAGNETIC DISACCOMMODATION

被引:0
|
作者
CASTRO, J [1 ]
RIVAS, J [1 ]
机构
[1] UNIV SANTIAGO DE COMPOSTELA, FAC FIS, DEPT FIS APLICADA, ELECTROMAGNET GRP, E-15706 SANTIAGO, SPAIN
关键词
Crystal defects - Demagnetization - Diffusion - Magnetic variables measurement - Magnetization - Probability - Random processes;
D O I
10.1016/0304-8853(94)90692-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend the Dietze theory for the diffusion after-effect to the case where the defects perform a continuous time random walk. Using a waiting time density of the fractional exponential type psi(t) = (1 - n)nut(-n)e(-nut1-n) a temporal dependence of a fractional power type t1-n at short times is reported.
引用
收藏
页码:342 / 346
页数:5
相关论文
共 50 条
  • [1] CONTINUOUS-TIME RANDOM-WALK APPROACH TO DYNAMIC PERCOLATION
    HILFER, R
    ORBACH, R
    CHEMICAL PHYSICS, 1988, 128 (01) : 275 - 287
  • [2] MULTIENERGETIC CONTINUOUS-TIME RANDOM-WALK
    CACERES, MO
    WIO, HS
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 54 (02): : 175 - 181
  • [3] A DUMBBELLS RANDOM-WALK IN CONTINUOUS-TIME
    ALEMANY, PA
    VOGEL, R
    SOKOLOV, IM
    BLUMEN, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (23): : 7733 - 7738
  • [5] DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION
    KLAFTER, J
    SILBEY, R
    PHYSICAL REVIEW LETTERS, 1980, 44 (02) : 55 - 58
  • [6] Atomic clocks and the continuous-time random-walk
    Formichella, Valerio
    Camparo, James
    Tavella, Patrizia
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (11):
  • [7] A CONTINUOUS-TIME GENERALIZATION OF THE PERSISTENT RANDOM-WALK
    MASOLIVER, J
    LINDENBERG, K
    WEISS, GH
    PHYSICA A, 1989, 157 (02): : 891 - 898
  • [8] Atomic clocks and the continuous-time random-walk
    Valerio Formichella
    James Camparo
    Patrizia Tavella
    The European Physical Journal B, 2017, 90
  • [9] Pattern formation on networks with reactions: A continuous-time random-walk approach
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [10] Continuous-time random-walk model for financial distributions
    Masoliver, J
    Montero, M
    Weiss, GH
    PHYSICAL REVIEW E, 2003, 67 (02):