A CONTINUOUS-TIME RANDOM-WALK APPROACH TO MAGNETIC DISACCOMMODATION

被引:0
|
作者
CASTRO, J [1 ]
RIVAS, J [1 ]
机构
[1] UNIV SANTIAGO DE COMPOSTELA, FAC FIS, DEPT FIS APLICADA, ELECTROMAGNET GRP, E-15706 SANTIAGO, SPAIN
关键词
Crystal defects - Demagnetization - Diffusion - Magnetic variables measurement - Magnetization - Probability - Random processes;
D O I
10.1016/0304-8853(94)90692-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend the Dietze theory for the diffusion after-effect to the case where the defects perform a continuous time random walk. Using a waiting time density of the fractional exponential type psi(t) = (1 - n)nut(-n)e(-nut1-n) a temporal dependence of a fractional power type t1-n at short times is reported.
引用
收藏
页码:342 / 346
页数:5
相关论文
共 50 条
  • [41] EFFECT OF TRAPPING ON TRANSPORT COHERENCE .2. CONTINUOUS-TIME RANDOM-WALK TREATMENT
    HERMAN, P
    BARVIK, I
    PHYSICAL REVIEW B, 1993, 48 (05) : 3130 - 3141
  • [42] Continuous-time random-walk simulation of H2 formation on interstellar grains
    Chang, Q
    Cuppen, HM
    Herbst, E
    ASTRONOMY & ASTROPHYSICS, 2005, 434 (02): : 599 - 611
  • [43] Exit times in non-Markovian drifting continuous-time random-walk processes
    Montero, Miquel
    Villarroel, Javier
    PHYSICAL REVIEW E, 2010, 82 (02):
  • [44] GENERALIZED NON-MARKOVIAN MASTER EQUATION FOR CONTINUOUS-TIME RANDOM-WALK WITH RANDOM FLYING TIMES
    RICHTER, S
    VOJTA, G
    PHYSICA A, 1992, 188 (04): : 631 - 643
  • [45] EQUIVALENCE BETWEEN RANDOM-SYSTEMS AND CONTINUOUS-TIME RANDOM-WALK - LITERAL AND ASSOCIATED WAITING-TIME DISTRIBUTIONS
    HAUS, JW
    KEHR, KW
    PHYSICAL REVIEW B, 1983, 28 (06) : 3573 - 3575
  • [46] Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities
    J. Helfferich
    J. Brisch
    H. Meyer
    O. Benzerara
    F. Ziebert
    J. Farago
    J. Baschnagel
    The European Physical Journal E, 2018, 41
  • [47] CONTINUOUS APPROXIMATION OF A RANDOM-WALK
    SHNEIDMAN, VA
    HANGGI, P
    PHYSICAL REVIEW E, 1994, 49 (01): : 894 - 897
  • [48] Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities
    Helfferich, J.
    Brisch, J.
    Meyer, H.
    Benzerara, O.
    Ziebert, F.
    Farago, J.
    Baschnagel, J.
    EUROPEAN PHYSICAL JOURNAL E, 2018, 41 (06):
  • [49] Continuous-time random-walk approach to supercooled liquids. I. Different definitions of particle jumps and their consequences
    Helfferich, J.
    Ziebert, F.
    Frey, S.
    Meyer, H.
    Farago, J.
    Blumen, A.
    Baschnagel, J.
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [50] Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes
    Nelson, J
    PHYSICAL REVIEW B, 1999, 59 (23): : 15374 - 15380