On discrete random dopant modeling in drift-diffusion simulations: physical meaning of 'atomistic' dopants

被引:91
|
作者
Sano, N [1 ]
Matsuzawa, K
Mukai, M
Nakayama, N
机构
[1] Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki 3057573, Japan
[2] STARC, Kohoku Ku, Yokohama, Kanagawa 2220033, Japan
关键词
D O I
10.1016/S0026-2714(01)00138-X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the physics behind the 'atomistic' dopant model widely used in drift-diffusion (DD) simulators for the study of statistical threshold voltage variations in ultra-small MOSFETs. It is found that the conventional dopant model, when extended to the extreme atomistic regime, becomes physically inconsistent with the concepts of electric potential presumed in DD device simulations. The split of the Coulomb potential between the long-range and short-range parts associated with discretized dopants. is critical for the device simulations under the atomistic regime. A new dopant model to overcome such problems for 3-dimensional DD simulations is proposed by employing this idea. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [31] Atomistic modeling of dopant implantation and annealing in Si:: damage evolution, dopant diffusion and activation
    Pelaz, L
    Marqués, LA
    Aboy, M
    López, P
    Barbolla, J
    COMPUTATIONAL MATERIALS SCIENCE, 2005, 33 (1-3) : 92 - 105
  • [32] ON THE USE OF THORNBER AUGMENTED DRIFT-DIFFUSION EQUATION FOR MODELING GAAS DEVICES
    BLAKEY, PA
    BURDICK, SA
    SANDBORN, PA
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1988, 35 (11) : 1991 - 1994
  • [33] Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells
    Pedesseau, L.
    Kepenekian, M.
    Sapori, D.
    Huang, Y.
    Rolland, A.
    Beck, A.
    Cornet, C.
    Durand, O.
    Wang, S.
    Katan, C.
    Even, J.
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES V, 2016, 9743
  • [34] Large drift-diffusion and Monte Carlo modeling of organic semiconductor devices
    Bolognesi, A
    Di Carlo, A
    Lugli, P
    Conte, G
    SYNTHETIC METALS, 2003, 138 (1-2) : 95 - 100
  • [35] Efficient Simulations of 6σ VT Distributions Due to Random Discrete Dopants
    Reid, Dave
    Millar, Campbell
    Roy, Gareth
    Roy, Scott
    Asenov, Asen
    ULIS 2009: 10TH INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION OF SILICON, 2009, : 23 - 26
  • [36] A Mobility Correction Approach for Overcoming Artifacts in Atomistic Drift-Diffusion Simulation of Nano-MOSFETs
    Amoroso, Salvatore Maria
    Adamu-Lema, Fikru
    Brown, Andrew R.
    Asenov, Asen
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (06) : 2056 - 2060
  • [37] On the limits of applicability of drift-diffusion based hot carrier degradation modeling
    Jech, Markus
    Sharma, Prateek
    Tyaginov, Stanislav
    Rudolf, Florian
    Grasser, Tibor
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (04)
  • [38] Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells
    Hwang, Inchan
    McNeill, Christopher R.
    Greenham, Neil C.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
  • [39] Physical modeling of defects, dopant activation and diffusion in aggressively scaled bulk and SOI devices: Atomistic and continuum approaches
    Moroz, Victor
    Martin-Bragado, Ignacio
    DOPING ENGINEERING FOR DEVICE FABRICATION, 2006, 912 : 179 - +
  • [40] From atomistic tight-binding theory to macroscale drift-diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations
    O'Donovan, Michael
    Chaudhuri, Debapriya
    Streckenbach, Timo
    Farrell, Patricio
    Schulz, Stefan
    Koprucki, Thomas
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (06)