COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS

被引:20
|
作者
Al-Shaniafi, Yousef [1 ]
Smith, Patrick F. [2 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1216/JCA-2011-3-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. A unital H-module M is a comultiplication module provided for each submodule N of M there exists an ideal A of R such that N is the set of elements M in M such that Am = 0. It is proved that if M is a finitely generated comultiplication H-module with annihilator B in R then the ring RIB is semilocal and in certain cases M is quotient finite dimensional. Moreover, certain comultiplication modules satisfy the AB5*-condition. If an H-module X = circle plus U-i is an element of I(i) is a direct sum of simple submodules U-i (i is an element of I) and if P-i is the annihilator of U-i in R for each i in I then X is a comultiplication module if and only if boolean AND P-j not equal i(j) not subset of P-i for all i is an element of I. A Noetherian comultiplication module is Artinian and a finitely generated Artinian module M is a comultiplication module if and only if the socle of M is a (finite) direct sum of pairwise non-isomorphic simple submodules. In case R is a Dedekind domain, an H-module M is a comultiplication module if and only if M is cocyclic or M congruent to (R/P-1(k(1))) circle plus ... circle plus (R/P-n(k(n))) for some positive integers n, k(i) (1(1) <= i <= n) and distinct maximal ideals P-i (1 <= i <= n) of R. For a general ring R a Noetherian H-module M is comultiplication if and only if the R-P-module M-P is comultiplication for every maximal ideal P of R, but it is shown that this is not true in general. It is shown that comultiplication modules and quasi-injective modules are related in certain circumstances.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [31] w-MODULES OVER COMMUTATIVE RINGS
    Yin, Huayu
    Wang, Fanggui
    Zhu, Xiaosheng
    Chen, Youhua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 207 - 222
  • [32] Linearity defects of modules over commutative rings
    Iyengar, Srikanth B.
    Roemer, Tim
    JOURNAL OF ALGEBRA, 2009, 322 (09) : 3212 - 3237
  • [33] ON WEAK ARMENDARIZ MODULES OVER COMMUTATIVE RINGS
    Shabani, M.
    Darani, A. Yousefian
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 581 - 590
  • [34] A scheme associated to modules over commutative rings
    Parsa, Mohammad Ali
    Moghimi, Hosein Fazaeli
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5289 - 5301
  • [35] ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS
    Pirzada, Shariefuddin
    Raja, Rameez
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1167 - 1182
  • [36] Cotilting modules over commutative Noetherian rings
    Stovicek, Jan
    Trlifaj, Jan
    Herbera, Dolors
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (09) : 1696 - 1711
  • [37] The locally nilradical for modules over commutative rings
    Annet Kyomuhangi
    David Ssevviiri
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 759 - 769
  • [38] ARTINIAN-MODULES OVER COMMUTATIVE RINGS
    SHARP, RY
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 25 - 33
  • [39] Tests for injectivity of modules over commutative rings
    Lars Winther Christensen
    Srikanth B. Iyengar
    Collectanea Mathematica, 2017, 68 : 243 - 250
  • [40] A graph associated with modules over commutative rings
    Mahdavi, Lotf Ali
    Rad, Parastoo Malakooti
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (02)