COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS

被引:20
|
作者
Al-Shaniafi, Yousef [1 ]
Smith, Patrick F. [2 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1216/JCA-2011-3-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. A unital H-module M is a comultiplication module provided for each submodule N of M there exists an ideal A of R such that N is the set of elements M in M such that Am = 0. It is proved that if M is a finitely generated comultiplication H-module with annihilator B in R then the ring RIB is semilocal and in certain cases M is quotient finite dimensional. Moreover, certain comultiplication modules satisfy the AB5*-condition. If an H-module X = circle plus U-i is an element of I(i) is a direct sum of simple submodules U-i (i is an element of I) and if P-i is the annihilator of U-i in R for each i in I then X is a comultiplication module if and only if boolean AND P-j not equal i(j) not subset of P-i for all i is an element of I. A Noetherian comultiplication module is Artinian and a finitely generated Artinian module M is a comultiplication module if and only if the socle of M is a (finite) direct sum of pairwise non-isomorphic simple submodules. In case R is a Dedekind domain, an H-module M is a comultiplication module if and only if M is cocyclic or M congruent to (R/P-1(k(1))) circle plus ... circle plus (R/P-n(k(n))) for some positive integers n, k(i) (1(1) <= i <= n) and distinct maximal ideals P-i (1 <= i <= n) of R. For a general ring R a Noetherian H-module M is comultiplication if and only if the R-P-module M-P is comultiplication for every maximal ideal P of R, but it is shown that this is not true in general. It is shown that comultiplication modules and quasi-injective modules are related in certain circumstances.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [21] McCoy modules and related modules over commutative rings
    Anderson, D. D.
    Chun, Sangmin
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) : 2593 - 2601
  • [22] Semimodules over commutative semirings and modules over unitary commutative rings
    Chajda, Ivan
    Laenger, Helmut
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1329 - 1344
  • [23] LATTICE DECOMPOSITION OF MODULES OVER COMMUTATIVE RINGS
    Garcia, Josefa M.
    Jara, Pascual
    Santos, Evangelina
    JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (04) : 497 - 511
  • [24] The locally nilradical for modules over commutative rings
    Kyomuhangi, Annet
    Ssevviiri, David
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 759 - 769
  • [25] CF-modules over commutative rings
    Najim, Ahmed
    Charkani, Mohammed Elhassani
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (01): : 25 - 34
  • [26] BAER SUBMODULES OF MODULES OVER COMMUTATIVE RINGS
    Anebri, Adam
    Kim, Hwankoo
    Mahdou, Najib
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 31 - 47
  • [27] Associated Graphs of Modules Over Commutative Rings
    Abbasi, A.
    Roshan-Shekalgourabi, H.
    Hassanzadeh-Lelekaami, D.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (01): : 45 - 58
  • [28] Second representable modules over commutative rings
    Abuhlail, Jawad
    Hroub, Hamza
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3859 - 3874
  • [29] Annihilator conditions on modules over commutative rings
    Anderson, D. D.
    Chun, Sangmin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (08)
  • [30] THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS
    Payrovi, Shiroyeh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 733 - 740