COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS

被引:20
|
作者
Al-Shaniafi, Yousef [1 ]
Smith, Patrick F. [2 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
D O I
10.1216/JCA-2011-3-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. A unital H-module M is a comultiplication module provided for each submodule N of M there exists an ideal A of R such that N is the set of elements M in M such that Am = 0. It is proved that if M is a finitely generated comultiplication H-module with annihilator B in R then the ring RIB is semilocal and in certain cases M is quotient finite dimensional. Moreover, certain comultiplication modules satisfy the AB5*-condition. If an H-module X = circle plus U-i is an element of I(i) is a direct sum of simple submodules U-i (i is an element of I) and if P-i is the annihilator of U-i in R for each i in I then X is a comultiplication module if and only if boolean AND P-j not equal i(j) not subset of P-i for all i is an element of I. A Noetherian comultiplication module is Artinian and a finitely generated Artinian module M is a comultiplication module if and only if the socle of M is a (finite) direct sum of pairwise non-isomorphic simple submodules. In case R is a Dedekind domain, an H-module M is a comultiplication module if and only if M is cocyclic or M congruent to (R/P-1(k(1))) circle plus ... circle plus (R/P-n(k(n))) for some positive integers n, k(i) (1(1) <= i <= n) and distinct maximal ideals P-i (1 <= i <= n) of R. For a general ring R a Noetherian H-module M is comultiplication if and only if the R-P-module M-P is comultiplication for every maximal ideal P of R, but it is shown that this is not true in general. It is shown that comultiplication modules and quasi-injective modules are related in certain circumstances.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [1] COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS II
    Al-Shaniafi, Yousef
    Smith, Patrick F.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (02) : 153 - 174
  • [2] Comultiplication Modules over Noncommutative Rings
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2013, 191 (5) : 743 - 747
  • [3] ON SEMIPRIME COMULTIPLICATION MODULES OVER PULLBACK RINGS
    Atani, Ebrahimi
    Atani, S. Ebrahimi
    Karbasi, A. Hassani
    COLLOQUIUM MATHEMATICUM, 2017, 146 (02) : 197 - 211
  • [4] ON QUASI COMULTIPLICATION MODULES OVER PULLBACK RINGS
    Atani, S. Ebrahimi
    Saraei, F. Esmaeili Khalil
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 26 : 95 - 110
  • [5] MODULES OVER COMMUTATIVE RINGS
    LEAVITT, WG
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10): : 1112 - &
  • [6] ON MODULES OVER COMMUTATIVE RINGS
    Fuchs, Laszlo
    Lee, Sang Bum
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (03) : 341 - 356
  • [7] MODULES OVER COMMUTATIVE RINGS
    MCCOY, NH
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 647 - &
  • [8] Weak comultiplication modules over a pullback of commutative local Dedekind domains
    Atani, Reza Ebrahimi
    Atani, Shahabaddin Ebrahimi
    ALGEBRA & DISCRETE MATHEMATICS, 2009, (01): : 1 - 13
  • [9] On morphic modules over commutative rings
    El Mehdi Bouba
    Mohammed Tamekkante
    Ünsal Tekir
    Suat Koç
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 1 - 11
  • [10] MODULES OVER COMMUTATIVE REGULAR RINGS
    PIERCE, RS
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, (70) : 1 - &