ALEXANDROV'S THEOREM REVISITED

被引:29
|
作者
Delgadino, Matias Gonzalo [1 ]
Maggi, Francesco [2 ]
机构
[1] Imperial Coll London, Dept Math, South Kensington Campus, London, England
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
ANALYSIS & PDE | 2019年 / 12卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
constant mean curvature; geometric measure theory; isoperimetric problem; sets of finite perimeter; varifolds; mean curvature flow;
D O I
10.2140/apde.2019.12.1613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that among sets of finite perimeter balls are the only volume-constrained critical points of the perimeter functional.
引用
收藏
页码:1613 / 1642
页数:30
相关论文
共 50 条
  • [31] Redheffer's theorem revisited
    Vlad Ionescu
    Integral Equations and Operator Theory, 1999, 34 : 45 - 55
  • [32] Lovelock's theorem revisited
    Navarro, Alberto
    Navarro, Jose
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1950 - 1956
  • [33] Dulac's Theorem Revisited
    Yeung, Melvin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
  • [34] Wolstenholme's theorem revisited
    Kanrar, Arpan
    ELEMENTE DER MATHEMATIK, 2023, 78 (01) : 35 - 36
  • [35] Macphail's theorem revisited
    Pellegrino, Daniel
    Silva, Janiely
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 647 - 656
  • [36] Farmer's Theorem revisited
    Veanes, M
    INFORMATION PROCESSING LETTERS, 2000, 74 (1-2) : 47 - 53
  • [37] Elfving's theorem revisited
    Studden, WJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 130 (1-2) : 85 - 94
  • [38] Funayama’s theorem revisited
    Guram Bezhanishvili
    David Gabelaia
    Mamuka Jibladze
    Algebra universalis, 2013, 70 : 271 - 286
  • [39] Roe's theorem revisited
    Andersen, Nils Byrial
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (03) : 165 - 172
  • [40] Macphail’s theorem revisited
    Daniel Pellegrino
    Janiely Silva
    Archiv der Mathematik, 2021, 117 : 647 - 656