Macphail’s theorem revisited

被引:0
|
作者
Daniel Pellegrino
Janiely Silva
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
来源
Archiv der Mathematik | 2021年 / 117卷
关键词
Macphail’s theorem; Dvoretzky–Rogers theorem; Matrices; Series; Banach spaces; 40A05; 46B45;
D O I
暂无
中图分类号
学科分类号
摘要
In 1947, M.S. Macphail constructed a series in ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach space theory, by showing that in all infinite-dimensional Banach spaces, there exists an unconditionally summable sequence that fails to be absolutely summable. More precisely, the Dvoretzky–Rogers theorem asserts that in every infinite-dimensional Banach space E, there exists an unconditionally convergent series ∑xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum x^{\left( j\right) }$$\end{document} such that ∑‖x(j)‖2-ε=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \Vert x^{(j)}\Vert ^{2-\varepsilon }=\infty $$\end{document} for all ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}. Their proof is non-constructive and Macphail’s result for E=ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\ell _{1}$$\end{document} provides a constructive proof just for ε≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 1$$\end{document}. In this note, we revisit Macphail’s paper and present two alternative constructions that work for all ε>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0.$$\end{document}
引用
收藏
页码:647 / 656
页数:9
相关论文
共 50 条
  • [1] Macphail's theorem revisited
    Pellegrino, Daniel
    Silva, Janiely
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 647 - 656
  • [2] Remarks on Hadamard matrices and a theorem of Macphail
    Teixeira, Katiuscia B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 640 : 1 - 5
  • [3] Editorial: The Comparative Psychology of Intelligence: Macphail Revisited
    Colombo, Michael
    Scarf, Damian
    Zentall, Tom
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [4] Miller's theorem revisited
    Roy, SCD
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (06) : 487 - 499
  • [5] Voronovskaja's theorem revisited
    Tachev, Gancho T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 399 - 404
  • [6] Malmheden's theorem revisited
    Agranovsky, M.
    Khavinson, D.
    Shapiro, H. S.
    EXPOSITIONES MATHEMATICAE, 2010, 28 (04) : 337 - 350
  • [7] ALEXANDROV'S THEOREM REVISITED
    Delgadino, Matias Gonzalo
    Maggi, Francesco
    ANALYSIS & PDE, 2019, 12 (06): : 1613 - 1642
  • [8] Redheffer's theorem revisited
    Ionescu, V
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (01) : 45 - 55
  • [9] Cox's theorem revisited
    Halpern, JY
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 : 429 - 435
  • [10] Ehrenfest's Theorem Revisited
    Arodz, Henryk
    ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2019, (66): : 73 - 94