ALEXANDROV'S THEOREM REVISITED

被引:29
|
作者
Delgadino, Matias Gonzalo [1 ]
Maggi, Francesco [2 ]
机构
[1] Imperial Coll London, Dept Math, South Kensington Campus, London, England
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
ANALYSIS & PDE | 2019年 / 12卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
constant mean curvature; geometric measure theory; isoperimetric problem; sets of finite perimeter; varifolds; mean curvature flow;
D O I
10.2140/apde.2019.12.1613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that among sets of finite perimeter balls are the only volume-constrained critical points of the perimeter functional.
引用
收藏
页码:1613 / 1642
页数:30
相关论文
共 50 条
  • [1] Alexandrov's estimate revisited
    Griffin, Charles J. K.
    Idu, Kennedy Obinna
    Jerrard, Robert L.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [2] A Pseudopolynomial Algorithm for Alexandrov's Theorem
    Kane, Daniel
    Price, Gregory N.
    Demaine, Erik D.
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 435 - +
  • [3] A PROOF OF TOPONOGOV?S THEOREM IN ALEXANDROV GEOMETRY
    Hu, Shengqi
    Su, Xiaole
    Wang, Yusheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, : 1743 - 1748
  • [4] ON THE STABILITY FOR ALEXANDROV'S SOAP BUBBLE THEOREM
    Magnanini, Rolando
    Poggesi, Giorgio
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 179 - 205
  • [5] On a discrete version of alexandrov's projection theorem
    Xiong, Huan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) : 1597 - 1606
  • [6] On a discrete version of alexandrov’s projection theorem
    Huan Xiong
    Acta Mathematica Sinica, English Series, 2013, 29 : 1597 - 1606
  • [7] On the stability for Alexandrov’s Soap Bubble theorem
    Rolando Magnanini
    Giorgio Poggesi
    Journal d'Analyse Mathématique, 2019, 139 : 179 - 205
  • [8] On a Discrete Version of Alexandrov's Projection Theorem
    Huan XIONG
    Acta Mathematica Sinica,English Series, 2013, (08) : 1597 - 1606
  • [9] ON TOPONOGOV'S COMPARISON THEOREM FOR ALEXANDROV SPACES
    Lang, Urs
    Schroeder, Viktor
    ENSEIGNEMENT MATHEMATIQUE, 2013, 59 (3-4): : 325 - 336
  • [10] A Variational Proof of Alexandrov's Convex Cap Theorem
    Izmestiev, Ivan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (04) : 561 - 585