Nonlinear Augmented Lagrangian and Duality Theory

被引:12
|
作者
Wang, C. Y. [1 ]
Yang, X. Q. [2 ]
Yang, X. M. [3 ]
机构
[1] Qufu Normal Univ, Inst Operat Res, Qufu, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear augmented Lagrangian; generalized peak at zero; zero duality gap; exact penalty representation; SADDLE-POINTS; CONVERGENCE;
D O I
10.1287/moor.2013.0591
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a unified framework of a nonlinear augmented Lagrangian dual problem is investigated for the primal problem of minimizing an extended real-valued function by virtue of a nonlinear augmenting penalty function. Our framework is more general than the ones in the literature in the sense that our nonlinear augmenting penalty function is defined on an open set and that our assumptions are presented in terms of a substitution of the dual variable, so our scheme includes barrier penalty functions and the weak peak at zero property as special cases. By assuming that the increment of the nonlinear augmenting penalty function with respect to the penalty parameter satisfies a generalized peak at zero property, necessary and sufficient conditions for the zero duality gap property are established and the existence of an exact penalty representation is obtained.
引用
收藏
页码:740 / 760
页数:21
相关论文
共 50 条
  • [31] A nonlinear augmented Lagrangian for constrained minimax problems
    He, Suxiang
    Zhou, Shumin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4567 - 4579
  • [32] On the convergence of augmented Lagrangian strategies for nonlinear programming
    Andreani, Roberto
    Ramos, Alberto
    Ribeiro, Ademir A.
    Secchin, Leonardo D.
    Velazco, Ariel R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1735 - 1765
  • [33] On exact augmented Lagrangian functions in nonlinear programming
    DiPillo, G
    Lucidi, S
    NONLINEAR OPTIMIZATION AND APPLICATIONS, 1996, : 85 - 100
  • [34] Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization
    J. Sun
    L. W. Zhang
    Y. Wu
    Journal of Optimization Theory and Applications, 2006, 129 : 437 - 456
  • [35] NONLINEAR AUGMENTED LAGRANGIAN FOR NONCONVEX MULTIOBJECTIVE OPTIMIZATION
    Chen, Chunrong
    Cheng, Tai Chiu Edwin
    Li, Shengjie
    Yang, Xiaoqi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 157 - 174
  • [36] AUGMENTED LAGRANGIAN FUNCTION IN NONLINEAR-PROGRAMMING
    TYRELLROCKAFELLAR, R
    OPERATIONS RESEARCH, 1975, 23 : B294 - B294
  • [37] Properties of the augmented Lagrangian in nonlinear semidefinite optimization
    Sun, J.
    Zhang, L. W.
    Wu, Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (03) : 437 - 456
  • [38] Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming
    Wu, H. X.
    Luo, H. Z.
    Yang, J. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (04) : 695 - 727
  • [39] Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming
    H. X. Wu
    H. Z. Luo
    J. F. Yang
    Journal of Global Optimization, 2014, 59 : 695 - 727
  • [40] Stability and augmented Lagrangian duality in nonconvex semi-infinite programming
    Huy, N. Q.
    Kim, D. S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 163 - 176