Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming

被引:13
|
作者
Wu, H. X. [1 ]
Luo, H. Z. [2 ]
Yang, J. F. [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Math, Coll Sci, Hangzhou 310032, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear semidefinite programming; Nonlinear separation; Saddle point; Augmented Lagrangian function; Modified primal-dual method; CONSTRAINED NONCONVEX OPTIMIZATION; OPTIMALITY CONDITIONS; SADDLE-POINTS; CONVERGENCE PROPERTIES; GLOBAL OPTIMIZATION; ROBUST-CONTROL; NONDEGENERACY; EXISTENCE; ALGORITHM;
D O I
10.1007/s10898-013-0093-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper aims at showing that the class of augmented Lagrangian functions for nonlinear semidefinite programming problems can be derived, as a particular case, from a nonlinear separation scheme in the image space associated with the given problem. By means of the image space analysis, a global saddle point condition for the augmented Lagrangian function is investigated. It is shown that the existence of a saddle point is equivalent to a regular nonlinear separation of two suitable subsets of the image space. Without requiring the strict complementarity, it is proved that, under second order sufficiency conditions, the augmented Lagrangian function admits a local saddle point. The existence of global saddle points is then obtained under additional assumptions that do not require the compactness of the feasible set. Motivated by the result on global saddle points, we propose two modified primal-dual methods based on the augmented Lagrangian using different strategies and prove their convergence to a global solution and the optimal value of the original problem without requiring the boundedness condition of the multiplier sequence.
引用
收藏
页码:695 / 727
页数:33
相关论文
共 50 条
  • [1] Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming
    H. X. Wu
    H. Z. Luo
    J. F. Yang
    Journal of Global Optimization, 2014, 59 : 695 - 727
  • [2] Exact augmented Lagrangian functions for nonlinear semidefinite programming
    Fukuda, Ellen H.
    Lourenco, Bruno F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 457 - 482
  • [3] On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming
    Luo, H. Z.
    Wu, H. X.
    Chen, G. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) : 599 - 618
  • [4] Exact augmented Lagrangian functions for nonlinear semidefinite programming
    Ellen H. Fukuda
    Bruno F. Lourenço
    Computational Optimization and Applications, 2018, 71 : 457 - 482
  • [5] On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming
    H. Z. Luo
    H. X. Wu
    G. T. Chen
    Journal of Global Optimization, 2012, 54 : 599 - 618
  • [6] The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming
    Sun, Defeng
    Sun, Jie
    Zhang, Liwei
    MATHEMATICAL PROGRAMMING, 2008, 114 (02) : 349 - 391
  • [7] The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming
    Defeng Sun
    Jie Sun
    Liwei Zhang
    Mathematical Programming, 2008, 114 : 349 - 391
  • [8] Augmented Lagrangian and nonlinear semidefinite programs
    Huang, XX
    Yang, XQ
    Teo, KL
    VARIATIONAL ANALYSIS AND APPLICATIONS, 2005, 79 : 513 - 529
  • [9] An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem
    Birgin, Ernesto G.
    Gomez, Walter
    Haeser, Gabriel
    Mito, Leonardo M.
    Santos, Daiana O.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01):
  • [10] An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem
    Ernesto G. Birgin
    Walter Gómez
    Gabriel Haeser
    Leonardo M. Mito
    Daiana O. Santos
    Computational and Applied Mathematics, 2020, 39