On the Goldbach conjecture in arithmetic progressions

被引:3
|
作者
Bauer, Claus
Wang Yonghui
机构
[1] Dolby Labs, San Francisco, CA 94103 USA
[2] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
关键词
D O I
10.1216/rmjm/1181069487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that for a given integer N and for all but << (log N)(B) prime numbers k <= N5/48-epsilon the following is true: For any positive integers b(i), i is an element of {1, 2, 3} (b(i), k) = 1 that satisfy N equivalent to b(1) + b(2) + b(3) (mod k), N can be written as N = p(1) + p(2) + p(3), where the p(i), i is an element of {1, 2, 3} are prime numbers that satisfy p(i) b(i) (mod k).
引用
收藏
页码:35 / 66
页数:32
相关论文
共 50 条
  • [31] Lucas non-Wieferich primes in arithmetic progressions and the abc conjecture
    Anitha, K.
    Fathima, I. Mumtaj
    Vijayalakshmi, A. R.
    OPEN MATHEMATICS, 2023, 21 (01):
  • [32] Avoiding arithmetic progressions (mod m) and arithmetic progressions
    Landman, BM
    UTILITAS MATHEMATICA, 1997, 52 : 173 - 182
  • [33] A SOLUTION OF THE GOLDBACH CONJECTURE
    Fragnito, Nicola
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 20 (02): : 147 - 211
  • [34] A study on Goldbach conjecture
    Carbo-Dorca, Ramon
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (09) : 1798 - 1809
  • [35] Refined Goldbach Conjectures with Primes in Progressions
    Martin, Kimball
    EXPERIMENTAL MATHEMATICS, 2019, : 226 - 232
  • [36] Goldbach's Conjecture
    林自新
    中学生数学, 2004, (15) : 41 - 41
  • [37] COROLLARY OF GOLDBACH CONJECTURE
    COHEN, E
    DUKE MATHEMATICAL JOURNAL, 1962, 29 (04) : 625 - &
  • [38] Oscillations in the Goldbach conjecture
    Mossinghoff, Michael J.
    Trudgian, Timothy S.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 295 - 307
  • [39] ARITHMETIC PROGRESSIONS
    HALMOS, PR
    RYAVEC, C
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (02): : 95 - 96
  • [40] Odd moments for the trace of Frobenius and the Sato-Tate conjecture in arithmetic progressions
    Bringmann, Kathrin
    Kane, Ben
    Pujahari, Sudhir
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 98