On the Goldbach conjecture in arithmetic progressions

被引:3
|
作者
Bauer, Claus
Wang Yonghui
机构
[1] Dolby Labs, San Francisco, CA 94103 USA
[2] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
关键词
D O I
10.1216/rmjm/1181069487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that for a given integer N and for all but << (log N)(B) prime numbers k <= N5/48-epsilon the following is true: For any positive integers b(i), i is an element of {1, 2, 3} (b(i), k) = 1 that satisfy N equivalent to b(1) + b(2) + b(3) (mod k), N can be written as N = p(1) + p(2) + p(3), where the p(i), i is an element of {1, 2, 3} are prime numbers that satisfy p(i) b(i) (mod k).
引用
收藏
页码:35 / 66
页数:32
相关论文
共 50 条
  • [21] GOLDBACH REPRESENTATIONS IN ARITHMETIC PROGRESSIONS AND ZEROS OF DIRICHLET L-FUNCTIONS
    Bhowmik, Gautami
    Halupczok, Karin
    Matsumoto, Kohji
    Suzuki, Yuta
    MATHEMATIKA, 2019, 65 (01) : 57 - 97
  • [22] On a Conjecture Regarding Permutations which Destroy Arithmetic Progressions
    Sawhney, Mehtaab
    Stoner, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [23] Borwein's conjecture on average over arithmetic progressions
    Alexandru Zaharescu
    The Ramanujan Journal, 2006, 11 : 95 - 102
  • [24] Borwein's conjecture on average over arithmetic progressions
    Zaharescu, A
    RAMANUJAN JOURNAL, 2006, 11 (01): : 95 - 102
  • [25] The explicit Sato-Tate conjecture for primes in arithmetic progressions
    Hammonds, Trajan
    Kothari, Casimir
    Luntzlara, Noah
    Miller, Steven J.
    Thorner, Jesse
    Wieman, Hunter
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (08) : 1905 - 1923
  • [26] On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic progressions
    Simpson, RJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 63 : 396 - 420
  • [27] The abc conjecture and non-Wieferich primes in arithmetic progressions
    Graves, Hester
    Murty, M. Ram
    JOURNAL OF NUMBER THEORY, 2013, 133 (06) : 1809 - 1813
  • [28] The sufficiency of arithmetic progressions for the 3x+1 conjecture
    Monks, Kenneth M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) : 2861 - 2872
  • [29] GOLDBACH CONJECTURE
    POGORZELSKI, HA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 292 : 1 - 12
  • [30] On Goldbach Conjecture
    Meireles, Manuel
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2ND EDITION, 2008, : 93 - 97