Parameter Estimation in Naphtha Pyrolysis Based on Chaos Quantum Particle Swarm Optimization Algorithm

被引:1
|
作者
Wang, Honggang [1 ]
Feng, Jingxin [1 ]
Qian, Feng [1 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
关键词
Parameter Estimation; Naphtha Pyrolysis; Chaos Quantum Particle Swarm Algorithm; Selectivities;
D O I
10.1109/WCICA.2008.4593841
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parameter estimation is the key step to improve the precision of a mechanistic model, which is fundamental for simulation, control and optimization of industrial processes. A novel method based on nonlinear optimization has been developed to estimate the initial selectivities of the first-order primary reaction for the naphtha decomposition. The proposed approach is to minimize the discrepancy between the model simulated outputs and the industrial measured values, based on the naphtha feed characteristics and operating condition. The chaos quantum particle swarm optimization (CQPSO) algorithm is proposed and employed since the problem is strongly nonlinear and high dimensional. By introducing the chaos-mutation operator with quantum-states-updating strategy, a good balance between exploration and exploitation is maintained throughout the entire searching, which is demonstrated by numerical experiment. The proposed algorithm is proved to be effective by estimating 10 parameters in the reaction model for naphtha pyrolysis.
引用
收藏
页码:5600 / 5604
页数:5
相关论文
共 50 条
  • [21] Quantum Particle Swarm Optimization Algorithm
    Xu Yu-fa
    Gao Jie
    Chen Guo-chu
    Yu Jin-shou
    ADVANCED RESEARCH ON MECHANICAL ENGINEERING, INDUSTRY AND MANUFACTURING ENGINEERING, PTS 1 AND 2, 2011, 63-64 : 106 - +
  • [22] A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
    Sun, Tao
    Xu, Ming-hai
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [23] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [24] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [25] Modified Quantum Particle Swarm Optimization for Chaos Synchronization
    Ko, Chia-Nan
    Lee, Ching-I
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2016), 2016, : 48 - 51
  • [26] Modeling and Parameter Estimation of Particle Swarm Optimization Algorithm for Smart Power Grid
    He Tao
    Liang Zhidong
    Ye Xinquan
    Sun Shufeng
    Pang Jihong
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2015, 8 (06): : 229 - 237
  • [27] Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm
    Huynh, Duy C.
    Dunnigan, Matthew W.
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1414 - 1419
  • [28] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [29] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [30] The Particle Swarm Optimization Algorithm with Adaptive Chaos Perturbation
    Mengxia, L.
    Ruiquan, L.
    Yong, D.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2016, 11 (06) : 804 - 818