Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [1] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Ayham Mohamad
    Jalal Karimi
    Alireza Naderi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [2] Dynamic aerodynamic parameter estimation using a dynamic particle swarm optimization algorithm for rolling airframes
    Mohamad, Ayham
    Karimi, Jalal
    Naderi, Alireza
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [3] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [4] USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION IN HYDROLOGICAL MODELLING
    Jakubcova, Michala
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 399 - 406
  • [5] Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms
    Huynh, D. C.
    Dunnigan, M. W.
    IET ELECTRIC POWER APPLICATIONS, 2010, 4 (09) : 748 - 760
  • [6] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +
  • [7] Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques
    Awadallah, Mohamed A.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2008, 36 (08) : 801 - 814
  • [8] Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization
    Mohammadi, Hamid Reza
    Akhavan, Ali
    JOURNAL OF ENGINEERING, 2014, 2014
  • [9] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [10] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312