Electrocodeposition of hydroxyapatite nanoparticles with zinc-iron alloys

被引:9
|
作者
Thiemig, D. [1 ]
Cantaragiu, A. M. [1 ]
Schachschal, S. [1 ]
Bund, A. [1 ]
Pich, A. [1 ]
Carac, G.
Gheorghies, C.
机构
[1] Tech Univ Dresden, Dresden, Germany
来源
SURFACE & COATINGS TECHNOLOGY | 2009年 / 203卷 / 10-11期
关键词
Electrocodeposition; FeZn alloy; Hydroxyapatite; Nanocomposites; Microhardness; MECHANICAL-PROPERTIES; ALUMINA NANOPARTICLES; COMPOSITE COATINGS; BATH COMPOSITION; INERT PARTICLES; ELECTRODEPOSITION; NICKEL; PH;
D O I
10.1016/j.surfcoat.2008.11.015
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the preparation of composite films consisting of ultrafine hydroxyapatite (HAp) nanoparticles in a zinc-iron (ZnFe) matrix. The films have been prepared by electrocodeposition from an alkaline electrolyte containing pyrophosphate as complexing agent. The HAp nanoparticles, synthesized by chemical precipitation, feature a needle-like shape with a diameter of similar to 10 nm and a length similar to 100 nm. The effects of a variety of deposition conditions, viz. current density, pH, temperature and composition of the plating bath on the codeposition of HAp nanoparticles with ZnFe-alloys were investigated by evaluating the alloy composition, nanoparticle content, structure and microhardness of the composite coatings. The presence of HAp nanoparticles in the bath was found to increase the iron content in the alloy and decrease the current efficiency of the cathodic deposition. Furthermore, a distinct increase in the Vickers microhardness appeared as a result of the nanoparticle incorporation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1488 / 1493
页数:6
相关论文
共 50 条
  • [41] MORPHOLOGY AND MICROSTRUCTURE OF ELECTRODEPOSITED ZINC-IRON BINARY ALLOY
    KONDO, K
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1988, 74 (12): : 2300 - 2306
  • [42] Phase structure and morphology of zinc-iron alloy electrodeposits
    M. Kanagasabapathy
    Sobha Jayakrishnan
    Russian Journal of Electrochemistry, 2011, 47 : 26 - 33
  • [43] Development of photocatalytic coupled zinc-iron oxide nanoparticles via solution combustion for bisphenol-A removal
    Tan, Y. H.
    Goh, P. S.
    Ismail, A. F.
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2015, 102 : 346 - 352
  • [44] Study on determination method of iron content in galvanized coating of zinc-iron alloy
    FAN Chun
    WANG Jingjing
    HUA Ben
    Baosteel Technical Research, 2022, 16 (04) : 28 - 32
  • [45] Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms
    Zbinden, M
    Martinez, I
    Guyot, F
    Cambon-Bonavita, MA
    Gaill, F
    EUROPEAN JOURNAL OF MINERALOGY, 2001, 13 (04) : 653 - 658
  • [46] Electrodeposition of zinc-iron alloy from an alkaline zincate bath
    Zhu, Li Qun
    Metal Finishing, 1998, 96 (11):
  • [47] METRONIDAZOLE AND TISSUE ZINC-IRON RATIO IN CANCER-THERAPY
    WILLSON, RL
    LANCET, 1976, 1 (7974): : 1407 - 1407
  • [48] Modeling and microstructural studies on anomalous electrodeposition of zinc-iron alloy
    Kanagasabapathy, M.
    Jayakrishnan, Sobha
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2011, 18 (05) : 343 - 350
  • [49] A MOSSBAUER STUDY OF ZINC-IRON INTERMEDIATE PHASES AND ELECTRODEPOSITED COATINGS
    GU, MY
    SIMMONS, GW
    MARDER, AR
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (02): : 273 - 277
  • [50] PROPERTIES OF ZINC-IRON ALLOY ELECTROPLATED STEEL SHEETS.
    Fukuzuka, Toshio
    Kajiwara, Kazuichi
    Miki, Kenji
    Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1980, 66 (07): : 807 - 813