Electrocodeposition of hydroxyapatite nanoparticles with zinc-iron alloys

被引:9
|
作者
Thiemig, D. [1 ]
Cantaragiu, A. M. [1 ]
Schachschal, S. [1 ]
Bund, A. [1 ]
Pich, A. [1 ]
Carac, G.
Gheorghies, C.
机构
[1] Tech Univ Dresden, Dresden, Germany
来源
SURFACE & COATINGS TECHNOLOGY | 2009年 / 203卷 / 10-11期
关键词
Electrocodeposition; FeZn alloy; Hydroxyapatite; Nanocomposites; Microhardness; MECHANICAL-PROPERTIES; ALUMINA NANOPARTICLES; COMPOSITE COATINGS; BATH COMPOSITION; INERT PARTICLES; ELECTRODEPOSITION; NICKEL; PH;
D O I
10.1016/j.surfcoat.2008.11.015
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on the preparation of composite films consisting of ultrafine hydroxyapatite (HAp) nanoparticles in a zinc-iron (ZnFe) matrix. The films have been prepared by electrocodeposition from an alkaline electrolyte containing pyrophosphate as complexing agent. The HAp nanoparticles, synthesized by chemical precipitation, feature a needle-like shape with a diameter of similar to 10 nm and a length similar to 100 nm. The effects of a variety of deposition conditions, viz. current density, pH, temperature and composition of the plating bath on the codeposition of HAp nanoparticles with ZnFe-alloys were investigated by evaluating the alloy composition, nanoparticle content, structure and microhardness of the composite coatings. The presence of HAp nanoparticles in the bath was found to increase the iron content in the alloy and decrease the current efficiency of the cathodic deposition. Furthermore, a distinct increase in the Vickers microhardness appeared as a result of the nanoparticle incorporation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1488 / 1493
页数:6
相关论文
共 50 条
  • [31] Nonanomalous Electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid
    Huang, JF
    Sun, IW
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) : C8 - C14
  • [32] ANODIC PROCESS FOR ELECTRODEPOSITION OF ZINC-IRON ALLOYS FROM AMMONIUM-OXALATE AND FTORIDE- ELECTROLYTES
    Shekhanov, R. F.
    Gridchin, S. N.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2022, 65 (06): : 37 - 43
  • [33] Thermodynamic study of zinc-iron intermetallics by mass spectrometry
    Mita, K
    Maeda, M
    EPD CONGRESS 1999, 1999, : 51 - 59
  • [34] THERMAL-DECOMPOSITION OF ZINC-IRON CITRATE PRECURSOR
    GAJBHIYE, NS
    BHATTACHARYA, U
    DARSHANE, VS
    THERMOCHIMICA ACTA, 1995, 264 : 219 - 230
  • [35] Characterization of zinc-iron alloy electrodeposits for corrosion resistance
    Ravindran, V
    Jayakrishnan, S
    Sridevi, R
    Rajakumari, R
    Muralidharan, VS
    BULLETIN OF ELECTROCHEMISTRY, 2004, 20 (03): : 115 - 118
  • [36] ON THE STABILITY OF DELTA PHASE IN THE ZINC-IRON SYSTEM.
    JENA, AKSHAYA K.
    LOEHBERG, KARL
    1982, V 73 (N 8): : 517 - 521
  • [37] Electrodeposition of zinc-iron alloy from a sulphate bath
    Kariyama, KG
    Venkatesha, TV
    BULLETIN OF ELECTROCHEMISTRY, 2005, 21 (12): : 547 - 553
  • [38] Method of Determining Iron Content in Galvanized Coating of Zinc-Iron Alloy
    Fan, Chun
    Wang, Jingjing
    Hua, Ben
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2024, 23 (06): : 520 - 526
  • [39] Wet chemical synthesis of zinc-iron oxide nanocomposite
    Ito, Honami
    Amagasa, Shota
    Nishida, Naoki
    Kobayashi, Yoshio
    Yamada, Yasuhiro
    HYPERFINE INTERACTIONS, 2017, 238
  • [40] Sliding wear behaviour of zinc-iron alloy electrodeposits
    Panagopoulos, CN
    Agathocleous, PE
    Papachristos, VD
    Michaelides, A
    SURFACE & COATINGS TECHNOLOGY, 2000, 123 (01): : 62 - 71