Parity and Singlet-Triplet High-Fidelity Readout in a Silicon Double Quantum Dot at 0.5 K

被引:13
|
作者
Niegemann, David J. [1 ]
El-Homsy, Victor [1 ]
Jadot, Baptiste [1 ]
Nurizzo, Martin [1 ]
Cardoso-Paz, Bruna [1 ]
Chanrion, Emmanuel [1 ]
Dartiailh, Matthieu [1 ]
Klemt, Bernhard [1 ]
Thiney, Vivien [1 ]
Bauerle, Christopher [1 ]
Mortemousque, Pierre-Andre [2 ]
Bertrand, Benoit [2 ]
Niebojewski, Heimanu [2 ]
Vinet, Maud [2 ]
Balestro, Franck [1 ]
Meunier, Tristan [1 ]
Urdampilleta, Matias [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst Neel, F-38402 Grenoble, France
[2] CEA, LETI, Minatec Campus, F-38054 Grenoble, France
来源
PRX QUANTUM | 2022年 / 3卷 / 04期
关键词
31;
D O I
10.1103/PRXQuantum.3.040335
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pauli-spin-blockade (PSB) measurements have so far achieved the highest fidelity of spin readout in semiconductor quantum dots, overcoming the 99% threshold. Moreover, in contrast to energy-selective readout, PSB is less error prone to thermal energy, an important feature for large-scale architectures that could be operated at temperatures above a few hundreds of millikelvins. In this work, we use rf reflec-tometry on a single-lead quantum dot to perform charge sensing and to probe the spin state of a double quantum dot at 0.5 K. At this relatively elevated temperature, we characterize both singlet-triplet and par-ity readout, which are complementary measurements to perform a complete readout of a two-spin system. We demonstrate high-fidelity spin readout with an average fidelity above 99.9 % for a readout time of 20 mu s and 99 % for 4 mu s. Finally, we succeed in initializing a singlet state in a single dot with a fidelity higher than 99 % and separate the two electrons while retaining the same spin state with a 95.6 % fidelity.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Coherence limitations in the optical control of the singlet-triplet qubit in a quantum dot molecule
    Kawa, Karol
    Kuhn, Tilmann
    Machnikowski, Pawel
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [42] Josephson effect through a multilevel quantum dot near a singlet-triplet transition
    Lee, Minchul
    Jonckheere, Thibaut
    Martin, Thierry
    PHYSICAL REVIEW B, 2010, 81 (15)
  • [43] Nonequilibrium Kondo effect in a multilevel quantum dot near the singlet-triplet transition
    Dong, B
    Lei, XL
    PHYSICAL REVIEW B, 2002, 66 (11)
  • [44] Singlet-triplet relaxation in two-electron silicon quantum dots
    Prada, M.
    Blick, R. H.
    Joynt, R.
    PHYSICAL REVIEW B, 2008, 77 (11)
  • [45] Singlet-triplet relaxation in SiGe/Si/SiGe double quantum dots
    Wang, L.
    Wu, M. W.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (04)
  • [46] Pulsed-gate measurements of the singlet-triplet relaxation time in a two-electron double quantum dot
    Petta, JR
    Johnson, AC
    Yacoby, A
    Marcus, CM
    Hanson, MP
    Gossard, AC
    PHYSICAL REVIEW B, 2005, 72 (16)
  • [47] High-fidelity readout and control of a nuclear spin qubit in silicon
    Jarryd J. Pla
    Kuan Y. Tan
    Juan P. Dehollain
    Wee H. Lim
    John J. L. Morton
    Floris A. Zwanenburg
    David N. Jamieson
    Andrew S. Dzurak
    Andrea Morello
    Nature, 2013, 496 : 334 - 338
  • [48] High-fidelity readout and control of a nuclear spin qubit in silicon
    Pla, Jarryd J.
    Tan, Kuan Y.
    Dehollain, Juan P.
    Lim, Wee H.
    Morton, John J. L.
    Zwanenburg, Floris A.
    Jamieson, David N.
    Dzurak, Andrew S.
    Morello, Andrea
    NATURE, 2013, 496 (7445) : 334 - 338
  • [49] Singlet-triplet-state readout in silicon metal-oxide-semiconductor double quantum dots
    Ma, Rong-Long
    Zhu, Sheng-Kai
    Kong, Zhen-Zhen
    Sun, Tai-Ping
    Ni, Ming
    Zhou, Yu-Chen
    Zhou, Yuan
    Luo, Gang
    Cao, Gang
    Wang, Gui-Lei
    Li, Hai-Ou
    Guo, Guo-Ping
    PHYSICAL REVIEW APPLIED, 2024, 21 (03)
  • [50] High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit
    Kim, Dohun
    Ward, Daniel R.
    Simmons, Christie B.
    Savage, Don E.
    Lagally, Max G.
    Friesen, Mark
    Coppersmith, Susan N.
    Eriksson, Mark A.
    NPJ QUANTUM INFORMATION, 2015, 1