GPstuff: Bayesian Modeling with Gaussian Processes

被引:0
|
作者
Vanhatalo, Jarno [1 ]
Riihimaki, Jaakko [2 ]
Hartikainen, Jouni [2 ]
Jylanki, Pasi [2 ]
Tolvanen, Ville [2 ]
Vehtari, Aki [2 ]
机构
[1] Univ Helsinki, Dept Environm Sci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Gaussian process; Bayesian hierarchical model; nonparametric Bayes;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
引用
收藏
页码:1175 / 1179
页数:5
相关论文
共 50 条
  • [1] A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes
    Ping, Menghao
    Jia, Xinyu
    Papadimitriou, Costas
    Han, Xu
    Jiang, Chao
    Yan, Wang-Ji
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 208
  • [2] Bayesian classification with Gaussian processes
    Williams, CKI
    Barber, D
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (12) : 1342 - 1351
  • [3] Bayesian Active Learning with Fully Bayesian Gaussian Processes
    Riis, Christoffer
    Antunes, Francisco
    Huttel, Frederik Boe
    Azevedo, Carlos Lima
    Pereira, Francisco Camara
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Gaussian Processes and Bayesian Moment Estimation
    Florens, Jean-Pierre
    Simoni, Anna
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (02) : 482 - 492
  • [5] Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
    Peruzzi, Michele
    Banerjee, Sudipto
    Finley, Andrew O.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 969 - 982
  • [6] How to Encode Dynamic Gaussian Bayesian Networks as Gaussian Processes?
    Hartwig, Mattis
    Moeller, Ralf
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 371 - 382
  • [7] Bayesian approaches to Gaussian mixture modeling
    Roberts, SJ
    Husmeier, D
    Rezek, I
    Penny, W
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) : 1133 - 1142
  • [8] Gaussian processes and neuronal modeling
    Elvira Di Nardo
    Amelia G. Nobile
    Enrica Pirozzi
    Luigi M. Ricciardi
    Natural Computing, 2007, 6 (3) : 283 - 310
  • [9] Gaussian processes and neuronal modeling
    Di Nardo, E
    Nobile, AG
    Pirozzi, E
    Ricciardi, LM
    MECHANISMS, SYMBOLS AND MODELS UNDERLYING COGNITION, PT 1, PROCEEDINGS, 2005, 3561 : 176 - 185
  • [10] Hierarchical modeling with Gaussian processes
    Menzefricke, U
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2000, 29 (04) : 1089 - 1108