Periodic Orbits and Dynamical Complexity in Cellular Automata

被引:26
|
作者
Dennunzio, Alberto [1 ]
Formenti, Enrico [2 ]
Di Lena, Pietro [3 ]
Margara, Luciano [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
[2] Univ Nice Sophia Antipolis, Lab I3S, F-06903 Sophia Antipolis, France
[3] Univ Bologna, Dipartimento Informat Sci & Ingn, I-40127 Bologna, Italy
关键词
cellular automata; symbolic dynamics; spatially and temporally periodic configurations; SAND AUTOMATA; POINTS; EQUICONTINUITY; CONJECTURES; LANGUAGES; SUBSHIFTS; ENTROPY; SYSTEMS; CHAOS;
D O I
10.3233/FI-2013-877
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the relationships between dynamical complexity and the set of periodic configurations of surjective Cellular Automata. We focus on the set of strictly temporally periodic configurations, i.e., the set of those configurations which are temporally but not spatially periodic for a given surjective automaton. The cardinality of this set turns out to be inversely related to the dynamical complexity of the cellular automaton. In particular, we show that for surjective Cellular Automata, the set of strictly temporally periodic configurations has strictly positive measure if and only if the cellular automaton is equicontinuous. Furthermore, we show that the set of strictly temporally periodic configurations is dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expansive ones. In the class of additive cellular automata, the set of strictly temporally periodic points can be either dense or empty. The latter happens if and only if the cellular automaton is topologically transitive. This is not true for general transitive Cellular Automata, where the set of of strictly temporally periodic points can be non-empty and non-dense.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
  • [31] Asynchronous cellular automata and dynamical properties
    Manzoni, Luca
    NATURAL COMPUTING, 2012, 11 (02) : 269 - 276
  • [32] DYNAMICAL CHARACTERISTICS OF LINEAR CELLULAR AUTOMATA
    ASO, H
    HONDA, N
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (03) : 291 - 317
  • [33] PERIODIC-ORBITS IN A RESONANT DYNAMICAL SYSTEM
    CARANICOLAS, N
    CELESTIAL MECHANICS, 1984, 33 (03): : 209 - 215
  • [34] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, Bastien
    Morante, Antonio
    Dynamical Systems, 2001, 16 (03) : 247 - 252
  • [35] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, B
    Morante, A
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 247 - 252
  • [36] Astrobiological Complexity with Probabilistic Cellular Automata
    Vukotic, Branislav
    Cirkovic, Milan M.
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 2012, 42 (04): : 347 - 371
  • [37] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [38] DYNAMICAL AVERAGING IN TERMS OF PERIODIC-ORBITS
    CVITANOVIC, P
    PHYSICA D, 1995, 83 (1-3): : 109 - 123
  • [39] PERIODIC ORBITS OF A DYNAMICAL SYSTEM RELATED TO A KNOT
    Lyubich, Lilya
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (03) : 411 - 426
  • [40] On the complexity of asynchronous freezing cellular automata
    Goles, Eric
    Maldonado, Diego
    Montealegre, Pedro
    Rios-Wilson, Martin
    INFORMATION AND COMPUTATION, 2021, 281