Periodic Orbits and Dynamical Complexity in Cellular Automata

被引:26
|
作者
Dennunzio, Alberto [1 ]
Formenti, Enrico [2 ]
Di Lena, Pietro [3 ]
Margara, Luciano [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, I-20126 Milan, Italy
[2] Univ Nice Sophia Antipolis, Lab I3S, F-06903 Sophia Antipolis, France
[3] Univ Bologna, Dipartimento Informat Sci & Ingn, I-40127 Bologna, Italy
关键词
cellular automata; symbolic dynamics; spatially and temporally periodic configurations; SAND AUTOMATA; POINTS; EQUICONTINUITY; CONJECTURES; LANGUAGES; SUBSHIFTS; ENTROPY; SYSTEMS; CHAOS;
D O I
10.3233/FI-2013-877
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the relationships between dynamical complexity and the set of periodic configurations of surjective Cellular Automata. We focus on the set of strictly temporally periodic configurations, i.e., the set of those configurations which are temporally but not spatially periodic for a given surjective automaton. The cardinality of this set turns out to be inversely related to the dynamical complexity of the cellular automaton. In particular, we show that for surjective Cellular Automata, the set of strictly temporally periodic configurations has strictly positive measure if and only if the cellular automaton is equicontinuous. Furthermore, we show that the set of strictly temporally periodic configurations is dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expansive ones. In the class of additive cellular automata, the set of strictly temporally periodic points can be either dense or empty. The latter happens if and only if the cellular automaton is topologically transitive. This is not true for general transitive Cellular Automata, where the set of of strictly temporally periodic points can be non-empty and non-dense.
引用
收藏
页码:183 / 199
页数:17
相关论文
共 50 条
  • [21] Dynamical tracking of unstable periodic orbits
    Pisarchik, AN
    PHYSICS LETTERS A, 1998, 242 (03) : 152 - 162
  • [22] Periodic orbits on discrete dynamical systems
    Zhou, Z
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) : 1155 - 1161
  • [23] Complexity and linear cellular automata
    Berthé, V
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2000, 34 (05): : 403 - 423
  • [24] The Complexity of Permutive Cellular Automata
    Ban, Jung-Chao
    Chang, Chih-Hung
    Chen, Ting-Ju
    Lin, Mei-Shao
    JOURNAL OF CELLULAR AUTOMATA, 2011, 6 (4-5) : 385 - 397
  • [25] Dynamical tracking of unstable periodic orbits
    Stepanov Institute of Physics, Natl. Academy of Sciences of Belarus, Skaryna Avenue 70, 220072 Minsk, Belgium
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3 (152-162):
  • [26] PERIODIC BEHAVIOR OF CELLULAR AUTOMATA
    POMEAU, Y
    JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (5-6) : 1379 - 1382
  • [27] Mixed-rule Cellular Automata: Analysis of Binary Periodic Orbits and FPGA based Implementation
    Matsushita, Kazuma
    Saito, Toshimichi
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [28] On the dynamical behavior of chaotic cellular automata
    Cattaneo, G
    Formenti, E
    Margara, L
    Mauri, G
    THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 31 - 51
  • [29] Embeddings of dynamical systems into cellular automata
    Mueller, Johannes
    Spandal, Christoph
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 165 - 177
  • [30] Asynchronous cellular automata and dynamical properties
    Luca Manzoni
    Natural Computing, 2012, 11 : 269 - 276