LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS II

被引:9
|
作者
Aougab, Tarik [1 ]
Dong, Stella Chuyue [2 ]
Strichartz, Robert S. [3 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06510 USA
[2] NYU, Dept Math, New York, NY 10012 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Julia sets; Laplacians; FRACTALS;
D O I
10.3934/cpaa.2013.12.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues the work started in [4] to construct P-invariant Laplacians on the Julia sets of P(z) = z(2) + c for c in the interior of the Mandelbrot set, and to study the spectra of these Laplacians numerically. We are able to deal with a larger class of Julia sets and give a systematic method that reduces the construction of a P-invariant energy to the solution of nonlinear finite dimensional eigenvalue problem. We give the complete details for three examples, a dendrite, the airplane, and the Basilica-in-Rabbit. We also study the spectra of Laplacians on covering spaces and infinite blowups of the Julia sets. In particular, for a generic infinite blowups there is pure point spectrum, while for periodic covering spaces the spectrum is a mixture of discrete and continuous parts.
引用
收藏
页码:1 / 58
页数:58
相关论文
共 50 条
  • [21] GEOMETRY AND COMBINATORICS OF JULIA SETS OF REAL QUADRATIC MAPS
    BARNSLEY, MF
    GERONIMO, JS
    HARRINGTON, AN
    JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (1-2) : 51 - 92
  • [22] Stability of Julia sets for a quadratic random dynamical system
    龚志民
    邱维元
    王键
    Science China Mathematics, 2002, (11) : 1381 - 1389
  • [23] Connectedness of Julia sets for a quadratic random dynamical system
    Gong, ZM
    Qiu, WY
    Li, Y
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1807 - 1815
  • [24] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Stefan-M. Heinemann
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2001, 237 : 571 - 583
  • [25] Stability of Julia sets for a quadratic random dynamical system
    Gong Zhimin
    Qiu Weiyuan
    Wang Jian
    Science in China Series A: Mathematics, 2002, 45 (11): : 1381 - 1389
  • [26] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Heinemann, SM
    Stratmann, BO
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 571 - 583
  • [27] Quadratic Julia sets with positive Lebesgue measure.
    Buff, X
    Chéritat, A
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (11) : 669 - 674
  • [28] The solar Julia sets of basic quadratic Cremer polynomials
    Blokh, A.
    Buff, X.
    Cheritat, A.
    Oversteegen, L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 51 - 65
  • [29] SIERPINSKI CURVE JULIA SETS FOR QUADRATIC RATIONAL MAPS
    Devaney, Robert L.
    Fagella, Nuria
    Garijo, Antonio
    Jarque, Xavier
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 3 - 22
  • [30] Stability of Julia sets for a quadratic random dynamical system
    Gong, ZM
    Qiu, WY
    Wang, JA
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (11): : 1381 - 1389