The solar Julia sets of basic quadratic Cremer polynomials

被引:3
|
作者
Blokh, A. [1 ]
Buff, X. [2 ,3 ]
Cheritat, A. [2 ,3 ]
Oversteegen, L. [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
[2] Univ Toulouse, UPS, INSA, Inst Math Toulouse,UTI,UTM, F-31062 Toulouse, France
[3] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse, France
关键词
INDECOMPOSABLE CONTINUA; CRITICAL-POINTS; LAMINATIONS; CIRCLE;
D O I
10.1017/S0143385708000990
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general, little is known about the exact topological structure of Julia sets containing a Cremer point. In this paper we show that there exist quadratic Cremer Julia sets of positive area such that for a full Lebesgue measure set of angles the impressions are degenerate, the Julia set is connected im kleinen at the landing points of these rays, and these points are contained in no other impression.
引用
收藏
页码:51 / 65
页数:15
相关论文
共 50 条
  • [1] The Julia sets of quadratic Cremer polynomials
    Blokh, Alexander
    Oversteegen, Lex
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 3038 - 3050
  • [2] HAUSDORFF DIMENSION OF JULIA SETS OF QUADRATIC POLYNOMIALS
    Manuel Martinez, Luis
    Ble, Gamaliel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [3] Equilibrium measures on Julia sets of random quadratic polynomials
    Lech, Krzysztof
    Zdunik, Anna
    NONLINEARITY, 2024, 37 (12)
  • [4] Conformal trace theorem for Julia sets of quadratic polynomials
    Connes, A.
    Mcdonald, E.
    Sukochev, F.
    Zanin, D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 2481 - 2506
  • [5] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Stefan-M. Heinemann
    Bernd O. Stratmann
    Mathematische Zeitschrift, 2001, 237 : 571 - 583
  • [6] Hausdorff dimension 2 for Julia sets of quadratic polynomials
    Heinemann, SM
    Stratmann, BO
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 571 - 583
  • [7] On computational complexity of Cremer Julia sets
    Dudko, Artem
    Yampolsky, Michael
    FUNDAMENTA MATHEMATICAE, 2021, 252 (03) : 343 - 353
  • [8] MONOTONE IMAGES OF CREMER JULIA SETS
    Blokh, Alexander
    Oversteegen, Lex
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 469 - 476
  • [9] Results for the Hausdorff dimension of Julia sets of quadratic polynomials
    Bodart, O
    Zinsmeister, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (02) : 121 - 137
  • [10] Total disconnectedness of Julia sets of random quadratic polynomials
    Lech, Krzysztof
    Zdunik, Anna
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (05) : 1764 - 1780