Early fire detection using convolutional neural networks during surveillance for effective disaster management

被引:285
|
作者
Muhammad, Khan [1 ]
Ahmad, Jamil [1 ]
Baik, Sung Wook [1 ]
机构
[1] Sejong Univ, Digital Contents Res Inst, Intelligent Media Lab, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; Image classification; Learning vision; Deep learning; Surveillance networks; Fire detection; Disaster management; REAL-TIME FIRE; FLAME DETECTION; VIDEO; COLOR; STEGANOGRAPHY; COMBINATION; FRAMEWORK; SENSOR; MEDIA;
D O I
10.1016/j.neucom.2017.04.083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fire disasters are man-made disasters, which cause ecological, social, and economic damage. To minimize these losses, early detection of fire and an autonomous response are important and helpful to disaster management systems. Therefore, in this article, we propose an early fire detection framework using fine-tuned convolutional neural networks for CCTV surveillance cameras, which can detect fire in varying indoor and outdoor environments. To ensure the autonomous response, we propose an adaptive prioritization mechanism for cameras in the surveillance system. Finally, we propose a dynamic channel selection algorithm for cameras based on cognitive radio networks, ensuring reliable data dissemination. Experimental results verify the higher accuracy of our fire detection scheme compared to state-of-the-art methods and validate the applicability of our framework for effective fire disaster management. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [21] Supernovae Detection by Using Convolutional Neural Networks
    Cabrera-Vives, Guillermo
    Reyes, Ignacio
    Forster, Francisco
    Estevez, Pablo A.
    Maureira, Juan-Carlos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 251 - 258
  • [22] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [23] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027
  • [24] Drone Detection Using Convolutional Neural Networks
    Mahdavi, Fatemeh
    Rajabi, Roozbeh
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [25] Firearm Detection using Convolutional Neural Networks
    De Azevedo Kanehisa, Rodrigo Fumihiro
    Neto, Areolino De Almeida
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 707 - 714
  • [26] Glasses Detection Using Convolutional Neural Networks
    Shao, Li
    Zhu, Ronghang
    Zhao, Qijun
    BIOMETRIC RECOGNITION, 2016, 9967 : 711 - 719
  • [27] Road Detection using Convolutional Neural Networks
    Narayan, Aparajit
    Tuci, Elio
    Labrosse, Frederic
    Alkilabi, Muhanad H. Mohammed
    FOURTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE (ECAL 2017), 2017, : 314 - 321
  • [28] An Effective Head Detection Framework via Convolutional Neural Networks
    Fu, Canmiao
    Yuan, Yule
    Zeng, Qiang
    He, Siying
    Zhao, Yong
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 477 - 487
  • [29] Effective Botnet Detection Through Neural Networks on Convolutional Features
    Chen, Shao-Chien
    Chen, Yi-Ruei
    Tzeng, Wen-Guey
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 372 - 378
  • [30] Wildland Fire Spread Modeling Using Convolutional Neural Networks
    Jonathan L. Hodges
    Brian Y. Lattimer
    Fire Technology, 2019, 55 : 2115 - 2142