Early fire detection using convolutional neural networks during surveillance for effective disaster management

被引:285
|
作者
Muhammad, Khan [1 ]
Ahmad, Jamil [1 ]
Baik, Sung Wook [1 ]
机构
[1] Sejong Univ, Digital Contents Res Inst, Intelligent Media Lab, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; Image classification; Learning vision; Deep learning; Surveillance networks; Fire detection; Disaster management; REAL-TIME FIRE; FLAME DETECTION; VIDEO; COLOR; STEGANOGRAPHY; COMBINATION; FRAMEWORK; SENSOR; MEDIA;
D O I
10.1016/j.neucom.2017.04.083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fire disasters are man-made disasters, which cause ecological, social, and economic damage. To minimize these losses, early detection of fire and an autonomous response are important and helpful to disaster management systems. Therefore, in this article, we propose an early fire detection framework using fine-tuned convolutional neural networks for CCTV surveillance cameras, which can detect fire in varying indoor and outdoor environments. To ensure the autonomous response, we propose an adaptive prioritization mechanism for cameras in the surveillance system. Finally, we propose a dynamic channel selection algorithm for cameras based on cognitive radio networks, ensuring reliable data dissemination. Experimental results verify the higher accuracy of our fire detection scheme compared to state-of-the-art methods and validate the applicability of our framework for effective fire disaster management. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 50 条
  • [1] Convolutional Neural Networks Based Fire Detection in Surveillance Videos
    Muhammad, Khan
    Ahmad, Jamil
    Mehmood, Irfan
    Rho, Seungmin
    Baik, Sung Wook
    IEEE ACCESS, 2018, 6 : 18174 - 18183
  • [2] Detection of Forest Fire using Convolutional Neural Networks
    Oliver, A. Sheryl
    Ashwanthika, U.
    Aswitha, R.
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS 2020), 2020, : 415 - 420
  • [3] Object detection using convolutional neural networks for natural disaster recovery
    Salluri D.K.
    Bade K.
    Madala G.
    International Journal of Safety and Security Engineering, 2020, 10 (02) : 285 - 291
  • [4] Effective detection of quantum discord by using convolutional neural networks
    Taghadomi, N.
    Mani, A.
    Fahim, A.
    Bakouei, A.
    QUANTUM MACHINE INTELLIGENCE, 2025, 7 (01)
  • [5] Detection of anomaly in surveillance videos using quantum convolutional neural networks
    Amin, Javaria
    Anjum, Muhammad Almas
    Ibrar, Kainat
    Sharif, Muhammad
    Kadry, Seifedine
    Crespo, Ruben Gonzalez
    IMAGE AND VISION COMPUTING, 2023, 135
  • [6] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [7] Deep Convolutional Neural Networks for Forest Fire Detection
    Zhang, Qingjie
    Xu, Jiaolong
    Xu, Liang
    Guo, Haifeng
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 568 - 575
  • [8] Convolutional neural network based early fire detection
    Faisal Saeed
    Anand Paul
    P. Karthigaikumar
    Anand Nayyar
    Multimedia Tools and Applications, 2020, 79 : 9083 - 9099
  • [9] Convolutional neural network based early fire detection
    Saeed, Faisal
    Paul, Anand
    Karthigaikumar, P.
    Nayyar, Anand
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) : 9083 - 9099
  • [10] Fire detection in video surveillances using convolutional neural networks and wavelet transform
    Huang, Lida
    Liu, Gang
    Wang, Yan
    Yuan, Hongyong
    Chen, Tao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110