Rodrigues formulas for the Macdonald polynomials

被引:21
|
作者
Lapointe, L
Vinet, L
机构
[1] Ctr. de Rech. Mathématiques, Université de Montréal, Montréal, Que. H3C 3J7
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/aima.1997.1662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present formulas of Rodrigues type giving the Macdonald polynomials for arbitrary partitions lambda through the repeated application of creation operators B-k, k=1,..., l(lambda) on the constant 1. Three expressions for the creation operators are derived one from the other. When the last of these expressions is used, the associated Rodrigues formula readily implies the integrality of the (q, t)-Kostka coefficients. The proofs given in this paper rely on the connection between affine Hecke algebras and Macdonald polynomials. (C) 1997 Academic Press.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 50 条