Nonsemisimple Macdonald polynomials

被引:0
|
作者
Ivan Cherednik
机构
[1] UNC,Department of Mathematics
来源
Selecta Mathematica | 2009年 / 14卷
关键词
Primary 33D80; Secondary 33D52; Double affine Hecke algebra; Macdonald polynomials; affine Weyl groups;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is mainly devoted to the irreducibility of the polynomial representation of the double affine Hecke algebra for an arbitrary reduced root system and generic “central charge” q. The technique of intertwiners in the nonsemisimple variant is the main tool. We introduce the Macdonald nonsemisimple polynomials and use them to analyze the reducibility of the polynomial representation in terms of the affine exponents, counterparts of the classical Coxeter exponents. The focus is on principal aspects of the technique of intertwiners, including related problems of the theory of reduced decomposition in affine Weyl groups and semisimple submodules of the polynomial representation.
引用
收藏
页码:427 / 569
页数:142
相关论文
共 50 条
  • [1] Nonsemisimple Macdonald polynomials
    Cherednik, Ivan
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 427 - 569
  • [2] Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials
    Andrei Okounkov
    Transformation Groups, 2003, 8 : 293 - 305
  • [4] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Sylvie Corteel
    Jim Haglund
    Olya Mandelshtam
    Sarah Mason
    Lauren Williams
    Selecta Mathematica, 2022, 28
  • [5] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Corteel, Sylvie
    Haglund, Jim
    Mandelshtam, Olya
    Mason, Sarah
    Williams, Lauren
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [6] On generalized Macdonald polynomials
    Mironov, A.
    Morozov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
  • [7] Double Macdonald polynomials as the stable limit of Macdonald superpolynomials
    O. Blondeau-Fournier
    L. Lapointe
    P. Mathieu
    Journal of Algebraic Combinatorics, 2015, 41 : 397 - 459
  • [8] Double Macdonald polynomials as the stable limit of Macdonald superpolynomials
    Blondeau-Fournier, O.
    Lapointe, L.
    Mathieu, P.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 397 - 459
  • [9] Lusztig Varieties and Macdonald Polynomials
    Ram, Arun
    ALGEBRAS AND REPRESENTATION THEORY, 2025,
  • [10] On factorization of generalized Macdonald polynomials
    Kononov, Ya.
    Morozov, A.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (08):