Nonsemisimple Macdonald polynomials

被引:0
|
作者
Ivan Cherednik
机构
[1] UNC,Department of Mathematics
来源
Selecta Mathematica | 2009年 / 14卷
关键词
Primary 33D80; Secondary 33D52; Double affine Hecke algebra; Macdonald polynomials; affine Weyl groups;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is mainly devoted to the irreducibility of the polynomial representation of the double affine Hecke algebra for an arbitrary reduced root system and generic “central charge” q. The technique of intertwiners in the nonsemisimple variant is the main tool. We introduce the Macdonald nonsemisimple polynomials and use them to analyze the reducibility of the polynomial representation in terms of the affine exponents, counterparts of the classical Coxeter exponents. The focus is on principal aspects of the technique of intertwiners, including related problems of the theory of reduced decomposition in affine Weyl groups and semisimple submodules of the polynomial representation.
引用
收藏
页码:427 / 569
页数:142
相关论文
共 50 条
  • [41] Deformed Macdonald-Ruijsenaars Operators and Super Macdonald Polynomials
    A. N. Sergeev
    A. P. Veselov
    Communications in Mathematical Physics, 2009, 288 : 653 - 675
  • [43] Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials
    Feigin, B
    Jimbo, M
    Miwa, T
    Mukhin, E
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (18) : 1015 - 1034
  • [44] Symmetrization of nonsymmetric Macdonald polynomials and Macdonald's inner product identities
    Nishino, A
    Komori, Y
    Ujino, H
    Wadati, M
    STUDIES IN APPLIED MATHEMATICS, 2002, 108 (04) : 399 - 425
  • [45] Toward the Schur expansion of Macdonald polynomials
    Assaf, Sami
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [46] A Nekrasov–Okounkov formula for Macdonald polynomials
    Eric M. Rains
    S. Ole Warnaar
    Journal of Algebraic Combinatorics, 2018, 48 : 1 - 30
  • [47] Vanishing Integrals of Macdonald and Koornwinder polynomials
    Eric M. Rains
    Monica Vazirani
    Transformation Groups, 2007, 12 : 725 - 759
  • [48] FACTORIZATIONS OF PIERI RULES FOR MACDONALD POLYNOMIALS
    GARSIA, AM
    HAIMAN, M
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 219 - 256
  • [49] Macdonald polynomials for super-partitions
    Galakhov, Dmitry
    Morozov, Alexei
    Tselousov, Nikita
    PHYSICS LETTERS B, 2024, 856
  • [50] Baxter Operator Formalism for Macdonald Polynomials
    Anton Gerasimov
    Dimitri Lebedev
    Sergey Oblezin
    Letters in Mathematical Physics, 2014, 104 : 115 - 139