Classification of stilbenoid compounds by entropy of artificial intelligence

被引:11
|
作者
Castellano, Gloria [1 ]
Lara, Ana [1 ]
Torrens, Francisco [2 ]
机构
[1] Univ Catolica Valencia San Vicente Martir, E-46001 Valencia, Spain
[2] Univ Valencia, Inst Univ Ciencia Mol, E-46071 Valencia, Spain
关键词
Antioxidant activity; Information entropy; Molecular classification; Polycyclic compound; Stilbenoid; ANTIOXIDANT ACTIVITY; RESVERATROL; BIOSYNTHESIS;
D O I
10.1016/j.phytochem.2013.10.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A set of 66 stilbenoid compounds is classified into a system of periodic properties by using a procedure based on artificial intelligence, information entropy theory. Eight characteristics in hierarchical order are used to classify structurally the stilbenoids. The former five features mark the group or column while the latter three are used to indicate the row or period in the table of periodic classification. Those stilbenoids in the same group are suggested to present similar properties. Furthermore, compounds also in the same period will show maximum resemblance. In this report, the stilbenoids in the table are related to experimental data of bioactivity and antioxidant properties available in the technical literature. It should be noted that stilbenoids with glycoxyl groups esterified with benzoic acid derivatives, in the group g11000 in the extreme right of the periodic table, show the greatest antioxidant activity as confirmed by experiments in the bibliography. Moreover, the second group from the right (g10111) contains Epiceatannol, which antioxidant activity is recognized in the literature. The experiments confirm our results of the periodic classification. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [31] Classification of global catastrophic risks connected with artificial intelligence
    Alexey Turchin
    David Denkenberger
    AI & SOCIETY, 2020, 35 : 147 - 163
  • [32] Nutritional Classification of Maria Cookies Using Artificial Intelligence
    Urueta-Hinojosa, D. E.
    Lavin-Delgado, J. E.
    Lara-Velazquez, P.
    Gutierrez-Andrade, M. A.
    Gomez-Aguilar, J. F.
    De los Cobos-Silva, S. G.
    Rincon-Garcia, E. A.
    Mora-Gutierrez, R. A.
    ANNALS OF NUTRITION AND METABOLISM, 2024, 80 : 170 - 170
  • [33] Classification of global catastrophic risks connected with artificial intelligence
    Turchin, Alexey
    Denkenberger, David
    AI & SOCIETY, 2020, 35 (01) : 147 - 163
  • [34] Artificial Intelligence in the Dermatological Diagnostics: The Skin Classification Project
    Brinker, T. J.
    Enk, A.
    Schadendorf, D.
    Berking, C.
    von Kalle, C.
    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2018, 16 : 7 - 7
  • [35] Artificial intelligence: getting ML classification models right
    IEC
    ChinaStandardization, 2022, (06) : 53 - 53
  • [36] Diseases diagnosis based on artificial intelligence and ensemble classification
    Rabie, Asmaa H.
    Saleh, Ahmed I.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 148
  • [37] Automatic Classification of Hospital Settings through Artificial Intelligence
    Iadanza, Ernesto
    Benincasa, Giovanni
    Ventisette, Isabel
    Gherardelli, Monica
    ELECTRONICS, 2022, 11 (11)
  • [38] Classification of Artificial Intelligence Based Coronary Artery Stenosis
    Ece, Yildiz
    Colak, Tuncay
    Uzun, Suleyman
    Sagiroglu, Ayse Oya
    PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES, 2022, 16 (01): : 548 - 554
  • [39] A classification framework for generative artificial intelligence for social good
    Crumbly, Jack
    Pal, Raktim
    Altay, Nezih
    TECHNOVATION, 2025, 139
  • [40] Use of Artificial Intelligence in Classification of Mill Scale Defects
    Lechwar, Szymon
    Rauch, Lukasz
    Pietrzyk, Maciej
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (03) : 266 - 277