Interplay between Folding and Assembly of Fibril-Forming Polypeptides

被引:28
|
作者
Ni, Ran [1 ,2 ]
Abeln, Sanne [3 ]
Schor, Marieke [2 ]
Stuart, Martien A. Cohen [1 ]
Bolhuis, Peter G. [2 ]
机构
[1] Wageningen Univ, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[2] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Ctr Integrat Bioinformat IBIVU, NL-1081 HV Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevLett.111.058101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Polypeptides can self-assemble into hierarchically organized fibrils consisting of a stack of individually folded polypeptides driven together by hydrophobic interaction. Using a coarse-grained model, we systematically studied this self-assembly as a function of temperature and hydrophobicity of the residues on the outside of the building block. We find the self-assembly can occur via two different pathways-a random aggregation-folding route and a templated-folding process-thus indicating a strong coupling between folding and assembly. The simulation results can explain experimental evidence that assembly through stacking of folded building blocks is rarely observed, at the experimental concentrations. The model thus provides a generic picture of hierarchical fibril formation.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Biomimetic design of fibril-forming non-immunogenic collagen like proteins for tissue engineering
    Aarthy, Mayilvahanan
    Hemalatha, Thiagarajan
    Suryalakshmi, Pandurangan
    Vinoth, Vetrivel
    Mercyjayapriya, Jebakumar
    Shanmugam, Ganesh
    Ayyadurai, Niraikulam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 266
  • [42] Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides
    Dexter, A. F.
    Fletcher, N. L.
    Creasey, R. G.
    Filardo, F.
    Boehm, M. W.
    Jack, K. S.
    RSC ADVANCES, 2017, 7 (44): : 27260 - 27271
  • [43] Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens
    Nakamura, Junko
    Shigematsu, Satoshi
    Yamauchi, Keishi
    Takeda, Teiji
    Yamazaki, Masanori
    Kakizawa, Tomoko
    Hashizume, Kiyoshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 374 (04) : 699 - 703
  • [44] Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential
    Zhang, Zhuqing
    Chen, Hao
    Lai, Luhua
    BIOINFORMATICS, 2007, 23 (17) : 2218 - 2225
  • [45] The Structure of Fibril-Forming SEM1(86-107) Peptide Increasing the HIV Infectivity
    Daria Sanchugova
    Aleksandra Kusova
    Aydar Bikmullin
    Vladimir Klochkov
    Dmitriy Blokhin
    BioNanoScience, 2021, 11 : 182 - 188
  • [46] Amyloid-forming propensity of the hydrophobic non-natural amino acid on the fibril-forming core peptide of human tau
    Hirata, Akiyoshi
    Sugimoto, Kenji
    Konno, Takashi
    Morii, Takashi
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2007, 17 (11) : 2971 - 2974
  • [47] Charge Effects on the Fibril-Forming Peptide KTVIIE: A Two-Dimensional Replica Exchange Simulation Study
    Jeon, Joohyun
    Shell, M. Scott
    BIOPHYSICAL JOURNAL, 2012, 102 (08) : 1952 - 1960
  • [48] Novel chemical tools to facilitate the synthesis and control the folding and Self-assembly of amyloid-forming polypeptides
    Awad, Loay
    Jejelava, Nino
    Brik, Ashraf
    Lashuel, Hilal
    BIOPOLYMERS, 2011, 96 (04) : 430 - 430
  • [49] Spatial structure of the fibril-forming SEM1(86–107) peptide in a complex with dodecylphosphocholine micelles
    D. A. Sanchugova
    A. G. Bikmullin
    V. V. Klochkov
    A. V. Aganov
    D. S. Blokhin
    Russian Chemical Bulletin, 2021, 70 : 2422 - 2426
  • [50] An amyloid-like fibril-forming supramolecular cross-β-structure of a model peptide: a crystallographic insight
    Maity, Sibaprasad
    Kumar, Pankaj
    Haldar, Debasish
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2011, 9 (10) : 3787 - 3791