Interplay between Folding and Assembly of Fibril-Forming Polypeptides

被引:28
|
作者
Ni, Ran [1 ,2 ]
Abeln, Sanne [3 ]
Schor, Marieke [2 ]
Stuart, Martien A. Cohen [1 ]
Bolhuis, Peter G. [2 ]
机构
[1] Wageningen Univ, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[2] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Ctr Integrat Bioinformat IBIVU, NL-1081 HV Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
D O I
10.1103/PhysRevLett.111.058101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Polypeptides can self-assemble into hierarchically organized fibrils consisting of a stack of individually folded polypeptides driven together by hydrophobic interaction. Using a coarse-grained model, we systematically studied this self-assembly as a function of temperature and hydrophobicity of the residues on the outside of the building block. We find the self-assembly can occur via two different pathways-a random aggregation-folding route and a templated-folding process-thus indicating a strong coupling between folding and assembly. The simulation results can explain experimental evidence that assembly through stacking of folded building blocks is rarely observed, at the experimental concentrations. The model thus provides a generic picture of hierarchical fibril formation.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Characterization of the fibrillation of pumpkin seed protein: Kinetics, structure, and fibril-forming regions
    Zhao, Hekai
    Zhang, Xu
    Lu, Yao
    Huang, Yuyang
    Yan, Shizhang
    Li, Yang
    FOOD HYDROCOLLOIDS, 2025, 165
  • [32] Fibril-forming model synthetic peptides containing 3-aminophenylacetic acid
    Maji, SK
    Haldar, D
    Banerjee, A
    Banerjee, A
    TETRAHEDRON, 2002, 58 (43) : 8695 - 8702
  • [33] Energy Evaluation of β-Strand Packing in a Fibril-Forming SH3 Domain
    Yang, Sichun
    Ravikumar, Krishnakumar M.
    Levine, Herbert
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (42): : 13051 - 13057
  • [34] The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin3.5
    Calabrese, Antonio N.
    Liu, Yanqin
    Wang, Tianfang
    Musgrave, Ian F.
    Pukala, Tara L.
    Tabor, Rico F.
    Martin, Lisandra L.
    Carver, John A.
    Bowie, John H.
    CHEMBIOCHEM, 2016, 17 (03) : 239 - 246
  • [35] The 3D profile method for identifying fibril-forming segments of proteins
    Thompson, MJ
    Sievers, SA
    Karanicolas, J
    Ivanova, MI
    Baker, D
    Eisenberg, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (11) : 4074 - 4078
  • [36] Four structural risk factors identify most fibril-forming kappa light chains
    Stevens, FJ
    AMYLOID-INTERNATIONAL JOURNAL OF EXPERIMENTAL AND CLINICAL INVESTIGATION, 2000, 7 (03): : 200 - 211
  • [37] Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions
    Raccosta, S.
    Blanco, M.
    Roberts, C. J.
    Martorana, V.
    Manno, M.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2016, 39 (03):
  • [38] Electrostatics Promotes Molecular Crowding and Selects the Fibrillation Pathway in Fibril-Forming Protein Solutions
    Raccosta, Samuele
    Martorana, Vincenzo
    Manno, Mauro
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 523A - 523A
  • [39] H-1-NMR ANALYSIS OF FIBRIL-FORMING PEPTIDE-FRAGMENTS OF TRANSTHYRETIN
    JARVIS, JA
    KIRKPATRICK, A
    CRAIK, DJ
    INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH, 1994, 44 (04): : 388 - 398
  • [40] Stereochemical effects on the aggregation and biological properties of the fibril-forming peptide [KIGAKI]3 in membranes
    Wadhwani, Parvesh
    Reichert, Johannes
    Strandberg, Erik
    Buerck, Jochen
    Misiewicz, Julia
    Afonin, Sergii
    Heidenreich, Nico
    Fanghaenel, Susanne
    Mykhailiuk, Pavel K.
    Komarov, Igor V.
    Ulrich, Anne S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (23) : 8962 - 8971