Variational Model for Low-Dimensional Magnets

被引:0
|
作者
Kudasov, Yu. B. [1 ,2 ]
Kozabaranov, R. V. [1 ]
机构
[1] Natl Res Nucl Univ Moscow Engn Phys Inst MEPhI, Sarov State Phys & Tech Inst, Sarov Branch, Sarov 607186, Russia
[2] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607188, Russia
关键词
one-dimensional quantum magnets; XXZchain in the alternating magnetic field; variational theory; Gutzwiller method; ground state; FIELD-INDUCED GAP; SPIN GAP; CHAIN;
D O I
10.1134/S1063783420090176
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The method of nonlocal trial variation function for quantum one-dimensional systems is developed on an example of a spin-1/2XXZchain with an alternating magnetic field. A four-site trial wave function for a fermionic representation of the model is constructed. The results obtained using the model with the extended trial wave function show a considerable improvement of accuracy of the ground state energy calculation in the field of critical behavior in comparison with the solutions obtained earlier. The methods for calculating the experimentally observed spin correlation function are considered.
引用
收藏
页码:1678 / 1684
页数:7
相关论文
共 50 条
  • [31] Nonequilibrium critical dynamics of low-dimensional frustrated magnets and multilayer structures
    Prudnikov, P. V.
    Prudnikov, V. V.
    Borzilov, V. O.
    Firstova, M. M.
    Samoshilova, A. A.
    INTERNATIONAL CONFERENCE ON COMPUTER SIMULATION IN PHYSICS AND BEYOND, 2019, 1163
  • [32] Solitons in low-dimensional magnets: Elementary excitations with a nontrivial dispersion law
    Galkina, E. G.
    Kireev, V. E.
    Ivanov, B. A.
    LOW TEMPERATURE PHYSICS, 2022, 48 (11) : 896 - 906
  • [33] Solitons in low-dimensional magnets: elementary excitations with a nontrivial dispersion law
    Galkina, E.G.
    Kireev, V.E.
    Ivanov, B.A.
    Fizika Nizkikh Temperatur, 2022, 48 (11): : 1015 - 1026
  • [34] Large magnetic thermal conductivity induced by frustration in low-dimensional quantum magnets
    Stolpp, Jan
    Zhang, Shang-Shun
    Heidrich-Meisner, Fabian
    Batista, Cristian D.
    PHYSICAL REVIEW B, 2019, 99 (13)
  • [35] The 1/D expansion for classical magnets: Low-dimensional models with magnetic field
    Garanin, DA
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 907 - 931
  • [36] Low-dimensional molecule-based magnets with hydrogen-bonded network
    Sakai, M
    Toyoda, J
    Mitsumi, M
    Nakasuji, K
    Furukawa, K
    Shiomi, D
    Sato, K
    Takui, T
    SYNTHETIC METALS, 2001, 121 (1-3) : 1776 - 1777
  • [37] High-Field Calorimetric Studies on Low-Dimensional and Frustrated Quantum Magnets
    Kohama, Yoshimitsu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (10)
  • [38] MODIFIED SPIN-WAVE THEORY OF LOW-DIMENSIONAL QUANTUM SPIRAL MAGNETS
    XU, JH
    TING, CS
    PHYSICAL REVIEW B, 1991, 43 (07): : 6177 - 6180
  • [39] ORGANIC-INTERCALATED HALOGEN-CHROMATES(II) - LOW-DIMENSIONAL MAGNETS
    BELLITTO, C
    DAY, P
    JOURNAL OF MATERIALS CHEMISTRY, 1992, 2 (03) : 265 - 271
  • [40] Low-dimensional model of a supersonic rectangular jet
    Moreno, D
    Krothapalli, A
    Alkislar, MB
    Lourenco, LM
    PHYSICAL REVIEW E, 2004, 69 (02): : 026304 - 1